Большая энциклопедия нефти и газа. Способ плавки чугуна

Размещено 08.06.2011 (актуально до 08.06.2012)

Историческая справка. Чугун был известен за 4-6 вв. до н. э. Доменное производство возникло в результате развития сыродутного процесса – «прямого» получения железа в твёрдом состоянии непосредственно из железной руды путём восстановления её в низких горнах или шахтных печах (домницах) с помощью древесного угля. Первые доменные печи в Европе появились в середине 14 в., а в России – около 1630, вблизи Тулы и Каширы. На Урале первый чугун получен в 1701, а в середине 18 в. благодаря развитию уральской металлургии Россия вышла на 1-е место в мире, которое удерживала до начала 19 в. До середины 18 в. единственное топливо для доменного производства – древесный уголь. В 1735 А. Дерби применил в доменной плавке каменно-угольный кокс.

Основные этапы развития доменного производства: применение паровой воздуходувной машины (И. И. Ползунов, 1766), нагрев дутья (Дж. Нилсон, 1829), изобретение кирпичного воздухонагревателя регенеративного типа (Э. Каупер, 1857). В 1913 в России было выплавлено 4,2 млн. т чугуна и она занимала 5-е место в мире. В 1940 в СССР было выплавлено 15 млн. т чугуна (3-е место в мире), а с 1947 Советский Союз уступал только США. В 1970 СССР вышел на 1-е место в мире. Выплавка чугуна в СССР в 1971 составила 89,3 млн. т. Большую роль в развитии доменного производства в СССР сыграли М. А. Павлов, М. К. Курако, И. П. Бардин. Доменное производство в СССР характеризуется применением высокомеханизированных и автоматизированных агрегатов и передовой технологии.

Выплавка чугуна производится в доменных печах, представляющих собой сложный технологический агрегат.

Доменная печь, домна – большая металлургическая, вертикально расположенная печь шахтного типа для выплавки чугуна и ферросплавов из железорудного сырья. Важнейшей особенностью доменного процесса является его непрерывность в течение всей кампании печи (от строительства печи до ее «капитального» ремонта) и противоток поднимающихся вверх фурменных газов с непрерывно опускающимся и наращиваемым сверху новыми порциями шихты столбом материалов.

Основным материалом для доменного производства является железная руда, содержащая железо в виде оксидов. Оксиды железа купить в виде руды возможно у сырьевых компаний крупнейших стран-экспортёров: Австралия, Бразилия, Индия, Канада, ЮАР, Украина, Россия, Швеция, Казахстан. Для загрузки в печь наиболее удобны куски руды диаметром от 10 до 50 мм. Более мелкая и пылевидная руда должна быть окускована путем спекания. Такое спекание называется агломерацией и производится на агломерационных фабриках, которые строятся иногда на рудниках, но чаще непосредственно на металлургических заводах.

В доменной печи происходит отделение железа от кислорода (процесс восстановления). Этот процесс возможен при высоких температурах, для создания которых в доменной печи сжигается кокс. Кокс содержит углерод, который при высоких температурах соединяется с кислородом оксидов железа или, как принято говорить, восстанавливает железо из оксидов. Раньше вместо кокса в доменных печах сжигали обыкновенный древесный уголь.

Пустая порода, содержащаяся в большом количестве в железной руде, и зола, имеющаяся в коксе, при плавлении шихты не переходят в металл, а образуют шлак, который нужно своевременно удалить из печи. Чтобы облегчить удаление шлака, в руду добавляют флюсы – материал, придающий шлаку более жидкий вид. Обычно флюсом служит известняк.

Материалы подают в засыпное устройство, находящееся в верхней части домны, по наклонному мосту в специальных тележках-скипах, емкость которых на больших печах достигает 10 м 3 ; подача материалов идёт непрерывно.

Рис. 1. Схема доменного производства

Таким образом, основными материалами для производства чугуна в доменной печи является железная руда, кокс и известняк. Кроме того, в доменном процессе для поддержания горения необходим воздух. Печь может работать только при непрерывной подаче воздуха.

Для того чтобы не охлаждать печь во время работы и ускорить плавку, воздух в печь подается подогретым до 600-800° и под давлением 1,5-2 атм. Воздух подогревают в специальных аппаратах – воздухонагревателях.

Воздухонагреватели представляют собой сварные цилиндрические сосуды диаметром от 7 до 9 м и высотой до 46 м с днищем и куполом. Воздухонагреватели изготовляют из листовой стали толщиной 10-14 мм. Внутреннее пространство воздухонагревателей разделено стенкой из огнеупорного кирпича на две вертикальные камеры – камеру горения и камеру насадки.

Камера, или шахта горения, и разделительная стенка начинаются от днища и идут до основания купола, так что под куполом остается свободное пространство для сообщения между камерами. В нижней части воздухонагревателя со стороны камеры: горения врезана горелка для сжигания газа.

Насадка – кирпичная кладка – выкладывается из огнеупорного (шамотного) кирпича так, чтобы образовались вертикальные сквозные от низа до верха каналы для прохода газа и воздуха. Благодаря каналам насадка обладает большой поверхностью нагрева (от 10 до 20 тыс. м2 и более). Насадка кладется на чугунную поднасадочную решетку, которая опирается на специальные колонны и расположена на уровне 2-2,5 м от днища воздухонагревателя.

Каналы насадки соответствуют отверстиям в решетке и имеют выход в пространство под решеткой, называемое поднасадочным пространством. В поднасадочное пространство по воздухопроводу холодного дутья подводится от воздуходувных машин холодный воздух.

Нагрев воздуха в воздухонагревателях происходит за счет сжигания очищенного газа, который, сгорая в камере горения, поднимается вверх под купол, а затем по каналам насадки опускается вниз и, отдав тепло насадке, уходит в дымовую трубу. После нагрева насадки газ и дымовую трубу отключают и через насадку пропускают воздух, который движется в направлении, обратном движению горячего газа. Горячий кирпич насадки отдает свое тепло воздуху.

Подогретый воздух по воздухопроводу горячего дутья подается от воздухонагревателей в кольцевую трубу и затем через специальные приборы, называемые фурмами, – в доменную печь.

Для одной доменной печи строят три или четыре воздухонагревателя, которые работают поочередно, т. е. если в одном нагревается насадка, то в другом – воздух, а третий запасной. Доменный процесс сопровождается также выделением побочных продуктов – доменного газа и шлака.

Жидкий шлак выпускается через шлаковые лётки в специальные ковши, в которых отвозится в шлаковые отвалы. В дальнейшем из него изготовляют строительные материалы – шлакоблоки. Доменный газ используется как топливо для сжигания в коксовых и мартеновских печах, в нагревательных печах прокатных цехов, а также в обыкновенных котельных топках.

Образующийся в печи газ через подсвечники, свечи и наклонные газопроводы отводится, в пылеуловители. Обычно на каждую доменную печь ставилось два пылеуловителя – первичный и вторичный. В настоящее время доменные печи сооружаются преимущественно с одним первичным пылеуловителем.

Свечи своей нижней частью, так называемыми подсвечниками, примыкают к куполу шахты. На доменную печь ставятся четыре подсвечника, а далее каждая пара подсвечников объединяется в одну свечу; свечи соединяются с первичным пылеуловителем двумя наклонными газопроводами грязного газа.

Пылеуловители представляют собой сварные цилиндрические сосуды диаметром от 9 до 11 м с коническим днищем и куполом, пылеуловители изготовляются из листовой стали толщиной 10-14 мм.

Доменный газ уносит с собой большое количество мелких частиц руды и кокса (колошниковой пыли) и по наклонным газоотводам попадает в пылеуловители. Здесь вследствие большего объема сосуда давление и скорость газа резко падают и значительная часть пыли (до 3/4) осаждается в конусах пылеуловителей, откуда ее периодически выпускают в вагоны и отвозят в отвал или на агломерационную фабрику, где она спекается в куски и вновь используется как шихтовый материал для доменной печи.

Пыль сильно истирает стенки свечей, газоотводов и пылеуловителей, поэтому их футеруют (выкладывают) шамотным кирпичом, а тройники и подсвечники – специальными чугунными плитами.

В пылеуловителях доменный газ проходит грубую очистку. Для дальнейшего использования газа необходима его полная очистка, которая происходит в специальных газовых цехах – газоочистках, входящих в комплекс сооружений доменного цеха. От пылеуловителей к газоочистке газ подается по газопроводу грязного газа. Очищенный газ по газопроводу чистого газа поступает к потребителям.

Доменный газ совершенно бесцветный и не имеет запаха, ядовит, а при соединении с воздухом образует взрывчатую смесь, которая при вспышке взрывается с огромной разрушительной силой. Поэтому при обращении с доменным газом требуется большая осторожность.

Таким образом, основным продуктом доменного производства является чугун, побочными продуктами – шлак, доменный газ и колошниковая пыль.

Основной примесью чугуна является углерод (2-4% и более), который может содержаться в чугуне в виде механической примеси (свободного графита) и в виде химического соединения с железом, называемого карбидом железа или цементитом. Получаемые в доменной печи чугуны разделяются на сорта: литейный, передельный и специальный.

Литейный чугун содержит свободный графит и имеет в изломе серый цвет и крупнозернистое строение. Этот чугун хорошо заполняет формы и легко поддается обработке режущим инструментом. Литейный чугун применяют для отливки радиаторов, труб, печных приборов и других строительных и бытовых изделий.

Передельный чугун содержит углерод в виде химического соединения с железом и имеет блестящий белый излом, поэтому иногда называется белым чугуном (белый цвет излома следует считать условным). Этот сорт чугуна плохо отливается и обрабатывается и идет главным образом в переплавку на сталь.

Специальные чугуны , или ферросплавы, имеют повышенное (более 10%) содержание одного или нескольких элементов, например кремния, марганца и др. Применяют их в основном в качестве специальных добавок при выплавке сталей.

Чугун и шлак периодически выпускают из печи: чугун через 4-6 час., а шлак через 2-3 часа. Производительность доменной печи характеризуется коэффициентом использования полезного объема, который представляет собой отношение полезного объема печи в кубических метрах к суточной выплавке чугуна в тоннах. Полезным объемом называется объем печи от уровня чугунной лётки до отметки низа большого конуса в опущенном состоянии.

Чем меньше коэффициент по абсолютному значению, тем лучше работает доменная печь. Более экономичными в эксплуатации являются доменные печи большого объема, поэтому впредь предполагается строительство печей большого объема.

Рис. 2. Разрез по оси доменной печи:

1 – пылеуловители; 2 – фундамент; 3 – рабочая площадка; 4 – кольцевой воздухопровод; 5 – лещадь; 6 – кладка горна; 7 – фурменные отверстия; 8 – кладка заплечиков; 9 – кладка шахты; 10 – колошник; 11 – наклонный газопровод; 12 – колошниковая площадка; 13 – засыпной аппарат; 14 – свечи; 15 – крыша здания поддоменника; 16 – колонны для удержания шахты; 17 – здание скипового подъемника; 18 – наклонный мост; 19 – железнодорожные вагоны с исходными шихтовыми материалами; 20 – бункер с шихтовыми материалами; 21 – скип; 22 – рудно-грейферный кран; I – горн; II – заплечики; III – распар; IV – шахта; V – колошник.

Обсудить на форуме

Изобретение относится к области металлургии, точнее к способам плавки чугуна в вагранках. Летку перед накоплением чугуна выплавляемой марки предварительно обогревают жидким чугуном, содержащим 3,5 – 4,4% C, 0,9 – 2,2% Si, 0,4 – 2% Mn, объемом, равным где d k – диаметр копильника, причем обогрев летки ведут одновременно с подачей в жидкий чугун кислорода, осуществляемой в предлеточное пространство копильника.

Изобретение относится к области литейного производства, точнее к способам плавки чугуна в вагранках, а именно к способам плавки, устраняющим “замерзание” металлической летки для выпуска металла в ковш.

Известен способ плавки чугуна в вагранках с копильником, включающий в себя загрузку шихты, ее плавление, перегрев чугуна, накопление его в копильнике и выпуск чугуна через металлическую летку (см. Грачев В.А., Черный А.А. Современные методы плавки чугуна. Саратов, 1973, с. 80-81).

Одним из недостатков известного способа является возможность “замерзания” металлической летки копильника, вызванная тем, что жидкий металл (особенно в первый период плавки, когда металл имеет низкую температуру, а копильник не прогрет) охлаждается в нижней части копильника, в районе летки, кристаллизуется и застывает с образованием “настыля”. Установлено, что “замерзание” летки в 10-20% плавок является причиной срывов плавок, в результате чего, как правило, вагранку приходится останавливать, охлаждать, открывать дверцу копильника, удалять настыль из копильника, что является весьма трудоемкой и дорогостоящей операцией.

Известен ряд производственных способов с “замерзанием” летки, которые являются малоэффективными, хотя и применяются в процессе плавки. К ним относятся пробивание “замерзшей” летки металлическим ломиком, прожигание летки кислородом, предварительный обогрев копильника. Первый прием в 50-60% случаев не дает желаемого эффекта или приводит к поломке леточного кирпича. Второй способ осуществляется подачей кислорода с внешней стороны леточного кирпича и также не всегда приводит к вскрытию летки, так как воздействие кислорода на уже застывший металл с пониженной температурой не стимулирует его окисления и прорыв летки. Расход кислорода, как правило, очень велик, процесс с точки зрения охраны труда очень опасен.

По третьему способу копильник перед плавкой разогревают газовой горелкой через шлаковую летку, а в случае “замерзания” металлической летки ее прожигают струей кислорода из газокислородного резака, размещаемого со стороны желоба копильника. “Замерзание” летки, как правило, происходит при первом выпуске чугуна.

Длительный опыт работы на вагранках показывает, что третий способ позволяет в 40-50% случаев “замерзания” летки предотвратить аварийную ситуацию и восстановить работоспособность вагранки. Однако в остальных случаях способ оказывается малоэффективным. Это связано с тем, что, во-первых, при разогреве копильника газовой горелкой через шлаковую летку нижняя часть копильника (подина и летка) разогреваются незначительно, что приводит к “замерзанию” металла в районе летки.

Во-вторых, прожигание летки кислородом эффективно только в том случае, если настыль металла находится в кашеобразном состоянии, а корка застывшего металла имеет толщину 5-10 мм. В противном случае способ неэффективен.

Целью настоящего изобретения является устранение указанных недостатков и разработка способа, позволяющего эффективно устранять “замерзание” металлической летки, преимущественно в первоначальный период плавки.

Задача решена тем, что в способе плавки чугуна в вагранке, включающем загрузку шихты, ее плавление, перегрев чугуна, накопление его в копильнике и выпуск через металлическую летку в ковш, перед накоплением чугуна нужной марки предварительно обогревают летку жидким чугуном, содержащим 3,5-4,4% C, 0,9-2,2% Si, 0,4-2% Mn, объемом, равным , где d k – диаметр копильника, причем обогрев летки ведут одновременно с подачей в жидкий чугун кислорода, при этом подачу кислорода осуществляют в подлеточное пространство копильника по трубопроводу, смонтированному в футеровке дверки копильника.

Способ осуществляется следующим образом. Перед плавкой вагранку и копильник разогревают природным газом до температуры футеровки 1100-1400 o C. Затем в варганку загружают шихту, расчитанную на получение жидкого чугуна следующего состава: 3,5-4.4% C; 0,9-2,2% Si; 0,4-2% Mn. Вес шихты расчитывают так, чтобы получить в копильнике объем чугуна, равный , где d k – диаметр копильника, (м). Загруженную шихту плавят, перегревают в холостой колоше (коксовая вагранка) или в огнеупорной насадке (газовая вагранка), после чего жидкий металл стекает в копильник и заполняет его нижнюю часть. Одновременно с заполнением копильника через трубопровод в жидкий металл подают кислород, который реагирует с металлом в предлеточном пространстве.

Подачу кислорода осуществляют в течение 2-3 мин, после чего подачу кислорода прекращают и через 5-7 мин после прекращения его подачи открывают пробку и спускают жидкий металл в ковш или сливают его в приямок. Далее плавку ведут обычным способом на нужную марку.

Обогрев летки жидким чугуном позволяет эффективно разогреть леточный кирпич, предлеточное пространство, футеровку и подину до температуры 1300-1400 o C, что обеспечивает устранение “замерзания” последующего металла и, следовательно, устранение образования настыля в предлеточном пространстве. При подаче кислорода в металл температура чугуна увеличивается (до 1500 o C) за счет электротермических реакций окисления C, Si и Mn, в результате чего и температура футеровки в нижней части возрастает до 1450-1500 o C. Высокий разогрев футеровки в нижней части и особенно леточного кирпича за счет воздействия чугуна и кислорода обеспечивает полное устранение “замерзания” металла и металлической летки. В дальнейшем трубка оплавляется и растворяется в жидком металле.

Положительный эффект достигается за счет следующего: 1. Обогрев летки чугуном эффективен, так как он осуществляется самым эффективным видом теплообмена – теплопередачей. Это позволяет разогреть футеровку до температуры 1300-1400 o C.

2. Применение кислорода позволяет эффективно и быстро повысить температуру чугуна до 1500 o C за счет окисления C, Si и Mn чугуна. До такой же температуры разогревается и футеровка нижней части копильника. Это в конечном итоге обеспечивает устранение возможности образования настыля металла в районе летки.

3. Приведенный состав чугуна (3,5-4.4% C; 0,9-2,2% Si; 0,4-2% Mn) обеспечивает низкую температуру плавления и, соответственно, низкую температуру кристаллизации чугуна (около 1150-1200 o C), что не позволяет ему “застыть” при температурах, наблюдаемых в районе летки. Кроме того, приведенный в заявке состав является оптимальным с точки зрения протекания реакций окисления C, Si и Mn при взаимодействии с кислородом. Это хорошо согласуется с практикой работы кислородных конвертеров. При таком составе чугуна за 2-3 мин температура чугуна возрастает с 1300 до 1500 o C. При содержании C менее 3,5%, Si менее 0,9%, Mn менее 0,4% температура кристаллизации чугуна возрастает, жидкотекучесть его снижается, скорость реакций окисления резко снижается, в результате чего эффективность обогрева летки снижается, возникает возможность образования настыля металла за счет его невысокой температуры и повышенной температуры затвердевания. Верхний предел состава чугуна по C, Si и Mn ограничен трудностью получения чугуна такого состава.

4. Оптимальный объем чугуна в копильнике, равный , обеспечивает обогрев нижней части копильника по всей высоте леточного кирпича 230 мм. Для копильника диаметром 0,5 м оптимальный объем металла будет равен 0,04 м 3 . Вес шихты будет равен 280 кг. Если объем чугуна будет меньше, то верхняя часть леточного кирпича не будет разогреваться, что может привести к “замерзанию” верхней летки. При большем объеме растет объем чугуна, увеличивается затрата на его расписание, возрастает расход кислорода без существенного повышения температуры леточного кирпича.

5. Одновременный обогрев летки жидким чугуном и подача в чугун кислорода обеспечивают одновременную передачу тепла от чугуна футеровке и повышение температуры чугуна за счет окисления элементов, в результате чего температура чугуна поддерживается постоянно высокой.

6. Подача кислорода по трубопроводу в предлеточное пространство позволяет подать кислород в наиболее уязвимое с точки зрения образования настыля место и повысить там температуру чугуна. В случае, если в предлеточном пространстве все-таки произошло образование настыля в виде полузастывшего металла, подача кислорода в эту зону способствует “прожиганию” в нем каналов для слива металла через летку. В дальнейшем при установившемся режиме плавки образованный настыль растворяется в металле.

Пример. Проводили плавку в опытной вагранке с копильником производительностью 0,5 т/ч. Диаметр шахты вагранки 0,5 м, диаметр копильника 0,5 м. В вагранку после ее разогрева загрузили 280 кг шихты: 60% передельного чугуна, 40% чугунного лома. Состав чугуна: 4,1% C, 1,5% Si, 1% Mn. Объем полученного чугуна 0,04 м 3 . Высота его уровня в копильнике 230 мм (на полную высоту леточного кирпича). Чугун через трубку в дверке копильника продули кислородом из баллона в течение 2,0 мин. Через 5 мин выпустили чугун из копильника. Температура по термопаре погружения 1475 o C. Последующая плавка проходила без “замерзания” летки. Проверка на производственной вагранке подтвердила результаты.

Сравнение предлагаемого изобретения с прототипом позволило установить, что отличительными признаками являются: обогрев летки чугуна с одновременной продувкой кислородом, оптимальный состав чугуна, оптимальный его объем, подача кислорода в предлеточное пространство. Технических решений с перечисленными признаками по научно-технической и патентной литературе не обнаружено, что свидетельствует о существенной новизне предлагаемого изобретения.

Таким образом, предлагаемое изобретение обладает существенной новизной и положительным эффектом. По изобретению разрабатывается технологическая документация для внедрения на Пензенском компрессорном заводе. Изобретение найдет применение в вагранках и других металлургических печах.

Способ плавки чугуна в вагранке, включающий загрузку шихты, ее плавление, перегрев чугуна, накопление его в копильнике и выпуск через металлическую летку копильника в ковш, отличающийся тем, что для обеспечения обогрева металлической лейки преимущественно в первоначальный период плавки перед накоплением в копильнике чугуна выплавляемой марки копильник предварительно заполняют жидким чугуном, содержащим 3,4 – 4,4% С, 0,9 – 2,2% Si, 0,4 – 2% Mn, объемом, равным где d к – диаметр копильника, м, одновременно с заполнением копильника чугуном в него по трубопроводу в предлеточное пространство копильника подают кислород.

Похожие патенты:

Cтраница 1

Плавка чугуна осуществляется в сталелитейных цехах. В процессе получения стали из жидкого чугуна выжигается углерод и ряд примесей (сера, фосфор и др.), в результате чего металл теряет хрупкость и приобретает упругость.

Плавка чугуна в электрических печах – индукционных и дуговых – приобретает все большее значение в связи с развитием производства модифицированных, высокопрочных и других качественных чугунов.

Краткая характеристика барабанных печей.

Плавка чугуна продолжается от 4 до 12 час. Расход твердого или пылевидного топлива составляет 30 – 40 % от веса металла. Кладка стенок стационарных печей выдерживает 80 – 100 плавок, свод 40 – 60 плавок.

Плавка чугуна с присадкой карбида кальция производится в обычной вагранке.

Плавка чугуна для валков производится в пламенных печах садкой 20 – 25 т для крупных валков и в вагранках производительностью 4 – 10 т / час для мелких валков.

Плавка чугуна нирезист производится в пламенных печах или в вагранках. По коррозио-стойкости и механическим свойствам (см. табл. 64 – 66) отливки близки к латуням и бронзам и превышают последние по износостойкости.

Плавка чугуна в пламенных печах требует непрерывного контроля за его составом и температурой средствами экспресс-анализа и отбором специальных проб. Как только металл достиг заданного химического состава и температуры, его следует немедленно выпустить из печи, так как иначе состав металла будет изменяться вследствие окисления.

Плавка чугуна с вермикулярным графитом аналогична плавке высокопрочного чугуна.

Плавка чугуна для фасонного литья может производиться в печах различной конструкции.

Плавка хромоппкелевых чугунов в основном производится в вагранке. Добавка легирующих элементов в шихту делается, как правило, при помощи природнолегированных типа елизаветинских или халпловсхих чугунов н чистого никеля. При присадке же феррохрома, вследствие высокой температуры, плавления последнего, работа вагранки желательна с подогревом воздуха или с дутьем, обогащенным кислородом.

Плавку чугуна в пламенных печах ведут на каменном угле, мазуте и на газе.

Плавку чугуна производят в двух блоках закрытых вагранок производительностью по 8 т / ч с водяным охлаждением и полной очисткой газов.

Продолжительность плавки чугуна в печи с основной футеровкой увеличивается на 30 – 40 мин, удельный расход электроэнергии повышается на 30 – 460 кВт – ч / т и увеличивается расход электродов по сравнению с плавкой в печи о кислой футеровкой.

Процесс плавки чугуна в вагранке состоит в следующем: в вагранку перед началом работы загружают дрова, разжигают их, а затем засыпают слой кокса на 700 – 800 мм выше уровня фурм (холостая колоша) и включают дутье. После разогрева нижней части вагранки в нее загружают в определенных пропорциях твердую шихту, состоящую из чугунных чушек, чугунного и стального лома, ферросплавов, кокса и известняка. Шихтовые материалы загружают в вагранку с помощью бадьи отдельными порциями, называемыми колошами, до самого завалочного окна. За счет тепла от сгорания кокса происходит расплавление металлической части шихты. Образовавшийся жидкий чугун стекает в горн, а продукты горения топлива поднимаются вверх, нагревают вышележащие слои шихты и затем удаляются через трубу с искрогасителем из вагранки. Процесс плавки чугуна в вагранке происходит непрерывно, а загрузка шихты я выпуск жидкого чугуна производится периодически.

Чугун выплавляют в вертикальных печах шахтного типа – доменных почах. Сущность процесса получения чугуна в доменных печах заключается в восстановлении окислов железа, входящих в состав руды, которую загружают в печь, окисью углерода, водородом и твердым углеродом, выделяющимися при сгорании топлива в печи.

Устройство и работа доменной печи. Полезная высота доменной печи достигает до 80 м или примерно в 2,5… 3 раза больше диаметра. Рабочее пространство печи включает колошник 6,шахту 5, распар 4, заплечики 3, горн 1, лещадь 15. В верхней части колошника находится засыпной аппарат 8, через который в печь загружают шихту (офлюсованный агломерат и окатыши).

Стенки печи выкладывают из огнеупорных материалов – в ос­новном из шамота. Нижнюю часть горна и его основание (лещадь) выполняют из особо огнеупорных материалов – углеродистых (графитизированных) блоков. Для повышения стойкости огнеупорной кладки в ней устанавливают (примерно на 3 Д высоты печи) металлические холодильники, по которым циркулирует вода. Для уменьшения расхода воды (для крупных печей расход воды до 70000 м 3 в сутки) применяют испарительное охлаждение, основанное на том, что погло­щаемое тепло используется для парообразования.

Кладка печи снаружи заключена в стальной кожух толщиной до 40 мм. Для уменьшения нагрузки на нижнюю часть печи ее верхнюю часть (шахту) сооружают на стальном кольце, опирающемся на ко­лонны. Доменная печь (рис. 1.4) имеет стальной кожух, выложенный изнутри огнеупорным шамотным кирпичом.

Схема работы доменного цеха современного металлургического за­вода приведена на рис. 1.5.

Шихтовые материалы поступают в бункера, расположенные на рудном дворе: офлюсованный агломерат- с агломерационной фабрики, а кокс – от коксовых батарей коксохимического завода. Из бункеров шихтовые материалы подаются в вагон-весы 1, на которых взвешивают определенные порции шихты. Из вагона-весов кокс и агломерат передаются в вагонетку 3 скипового подъемника. Скиповой подъ­емник представляет собой наклонный рельсовый мост, по которому дви­жутся две вагонетки. Скип поднимается стальным канатом до верхней точки рельсового моста и опрокидывается. Через загрузочное устройст­во (засыпной аппарат) 4 шихта попадает в доменную печь (см. рис. 1.5). Печь состоит из колошника 5, шахты б, распара 7, заплечиков 8 и горна 9.

Две скиповые вагонетки с помощью лебедки передвигаются по наклонному мосту 12 (см. рис. 1.4) к засыпному аппарату 8 и, опрокидываясь, высыпают шихту в приемную воронку 7 распределителя шихты. При опускании малого конуса 10 засыпного аппарата шихта попадает в чашу 11 а при опускании большого конуса 13 – в доменную печь. Такая последовательность работы механизмов засыпного аппарата необходима для предотвращения выхода газов из доменной печи в атмосферу.

Рис. 1.4. Схема устройства доменной печи и воздухонагревателя

Для равномерного распределения шихты в доменной печи малый конус и приемная воронка после загрузки очередной порции материалов поворачиваются на угол, кратный 60°. Все механизмы засыпного аппарата и скипового подъемника Агломерат, руду, флюс и кокс, поступающие в печь в определенномсоотношении, называют шихтой .

Доменные печи, как и все шахтные печи, работают по принципу противотока. Сверху сходят шихтовые материалы, а снизу им навстречу движутся газы, образующиеся в процессе горения топлива.

Рис. 1.5. Схема работы доменного цеха

В процессе работы печи шихтовые материалы постепенно опускаются вниз, а через загрузочное устройство в печь подаются новые порции шихтовых материалов в таком количестве, чтобы весь полезный объем печи был заполнен.

Полезный объем печи – это объем, занимаемый шихтой от лещади до нижней кромки большого конуса засыпного аппарата при его опускании. Современные доменные печи имеют полезный объем 2000…5000 м 3 Полезная высота доменной печи достигает 35 м. В верхней части горна находятся фурменные устройства 14 через которые в печь поступают нагретый воздух, необходимый для горения кокса, и газообразное топливо, в некоторых случаях жидкое или пылевидное топливо. Предварительный нагрев воздуха необходим для уменьшения потерь теплоты в печи. Воздух поступает в доменную печь из воздухонагревателей. Для нагрева воздуха применяют воздухонагреватели регенеративного типа. Внутри воздухонагревателя (рис. 1.4, справа) имеется камера сгорания 2 и насадка 4 занимающая основной объем воздухонагревателя. Насадка выложена из огнеупорных кирпичей 3 так, что между ними образуются вертикальные каналы. В нижнюю часть камеры сгорания к горелке 1 подается очищенный от пыли колошниковый газ, который сгорает и образует горячие газы. Горячие газы, проходя через насадку, нагревают ее и удаляются из воздухонагревателя через дымовую трубу. Затем подача газа к горелке прекращается, и по трубопроводу через насадку пропускается холодный воздух, подаваемый турбовоз-духодувной машиной. Доменная печь имеет несколько воздухо­нагревателей: в то время как в одних насадка нагревается горя­чими газами, в других она отдает теплоту холодному воздуху, нагревая его. По охлаждении нагретой насадки воздухом нагреватели переключаются. Воздух, проходя через насадку воздухо – нагревателя, нагревается до 1000…1200 °С и поступает к фурменному устройству 14 доменной печи (см. рис. II.2), а оттуда в ее рабочее пространство.

Горение топлива. Вблизи фурм 2 (см. рис. 1.4) углерод кокса, взаимодействуя с кислородом воздуха, сгорает:

С + О 2 = СО 2 + 393,51 кДж.

При высоких температурах и в присутствии твердого углерода кокса двуокись углерода неустойчива и частично переходит и окись углерода;

СО 2 + С = 2СО – 171,88 кДж.

Одновременно, на некотором расстоянии от фурм, идет реакция неполного горения углерода кокса:

С – 1 / 2 О 2 = СО + 110,5 к Дж.

В результате горения кокса в доменной печи выделяется теплота и образуется газовый поток, содержащий СО, СО 2 и другие газы. При этом в печи немного выше уровня фурм температура становится более 2000° С. Горячие газы, поднимаясь вверх, отдают свою теплоту шихтовым материалам и нагревают их, охлаждаясь до 400…300 °С у колошника. В зоне печи, где температура газон достигает 700 … 450 °С, часть окиси углерода разлагается с образованием сажистого углерода, оседающего на шихтовых материалах:

2СО = СО 2 + С↓

Остальная часть газа, состоящего в основном из СО, СО 2 , N 2 , Н 2 , СН 4 (колошниковый газ), отводится из печи по трубам и после очистки используется как топливо для воздухонагревателей.

Шихтовые материалы (агломерат, кокс) опускаются навстречу потоку газов и нагреваются. В результате в них происходит целый ряд химических превращений: удаляется влага, из топлива выделяются летучие вещества, а при прогреве шихты до температуры ~ 570 °С начинается основной процесс – восстановление окислов железа, содержащихся в агломерате.

Восстановление окислов железа в доменной печи. Этот процесс протекает в результате взаимодействия окислов железа с окисью углерода и твердым углеродом кокса, а также водородом. Восстановление твердым углеродом называют прямым, а газами – косвенным.

При температурах до 570 °С восстановление окиси железа протекает по реакциям

ЗFe 2 О 3 + СО = 2Ге 3 О 4 + СО 2 ;

Fе 3 О 4 + 4СО = ЗFе + 4СО 2 .

При более высоких температурах (750…900 °С) окислы железа восстанавливаются наиболее интенсивно:

ЗFе 2 Оз + СО = 2Fе 3 О 4 + СО 2 ;

Fе 3 О 4 + СО = ЗFеО + СО 2 ;

FeО+СО = Fе + СО 2 .

При этих температурах из руды, находящейся в нижней зоне шахты доменной печи, образуется твердое губчатое железо. Некоторая часть закиси железа опускается до уровня распара и заплечиков, где восстанавливается твердым углеродом кокса в результате двух одновременно протекающих реакций:

СО 2 + С = 2СО;

FеО + СО = Fе + СО 3

FеО + C = Fe + CO

В реакциях восстановления железа участвуют также сажистый углерод и водород, особенно при введении в доменную печь природного газа.

По мере опускания шихта достигает зоны в печи, где температура составляет 1000 … 1100 °С. При этих температурах восстановленное из руды твердое железо, взаимодействуя с окисью углерода, коксом и сажистым углеродом, интенсивно науглероживается благодаря способности железа в твердом состоянии растворять углерод:

ЗFе + 2СО = Ге 3 С + СО 2 ;

ЗFe + С = Fе 3 С.

При насыщении углеродом температура плавления железа понижается и на уровне распара и заплечиков оно расплавляется. Капли железоуглеродистого сплава, протекая по кускам кокса, дополнительно насыщаются углеродом (до 4 % и более), марганцем, кремнием, фосфором, которые восстанавливаются из руды, а также серой, содержащейся в коксе. Эти процессы протекают следую­щим образом.

Марганец содержится в руде в виде МnО 2 , Мn 2 О 3 , Мп 3 О 4 . Эти соединения легко восстанавливаются до МnО. При температуре более 1000 °С часть МnО восстанавливается твердым углеродом по реакциям

МnО+СО = Мn + СО 2 ;

СО 2 + С=2СО

МnО + С = Мn + СО

Одновременно марганец взаимодействует с твердым углеродом и образует карбид Мn 3 С, повышая содержание углерода в сплаве. Другая часть МnО входит в состав шлака.

Кремний, содержащийся в пустой породе руды в виде SiO 2 , температуре выше 1100 0 С также частично восстанавливается твердым углеродом:

SiO 2 + С = SiO + СО;

SiO + С = Si + СО

SiO 2 + 2С = Si + 2СО

Образовавшийся кремний растворяется в железе. Другая часть SiO 2 также входит в состав шлака.

Фосфор содержится в рудо в виде соединений (FеО) 3 Р 2 О 5 и (СаО) 3 Р 2 О 5 . Частично фосфат железа восстанавливается окисью углерода:

2Fе 3 (РО 4) 2 + 16СО = 2Fе 3 Р + 2Р + 16СО 2 .

При температурах более 1000° С восстановление идет за счет твердого углерода:

2Fе 3 (РО 4) 2 + 16С = ЗFе 3 Р + 2Р + 16СО.

При температурах выше 1300 °С фосфор восстанавливается из фосфата кальция:

(СаО) 3 Р 2 О 5 + 5С = ЗСаО + 2Р + 5СО.

Образовавшийся фосфид железа (Fе 3 Р) и фосфор полностью растворяются в железе и входят в состав чугуна.

Сера присутствует в коксе и руде в виде органической серы и соединений FeS 2 , FеS, СаSО 4 . Сера летуча и поэтому часть ее удаляется с газом при нагреве шихты в печи. Сера из кокса окисляется у фурм кислородом дутья до SО 2 и, поднимаясь с газами, восстанавливается твердым углеродом:

SО 2+ 2С = S + 2СО.

При этом часть серы в виде S и FeS растворяется в чугуне. Сера является вредной примесью и ухудшает качество чугуна. Для удаления серы стремятся повысить содержание СаО в шлаке. При этом часть серы в виде СаS удаляется в шлак по реакциям

FеS + СаО=СаS + FеО,

FеО + С = Fе + СО.

Таким образом, в результате процессов восстановления окислов железа, части окислов марганца и кремния, фосфатов и сер­нистых соединений, растворения в железе С, Мn, Si, Р, S в печи образуется чугун. В нижней части печи образуется шлак в ре­зультате сплавления окислов пустой породы руды, флюсов и золы топлива. В условиях доменного процесса окислы Аl 2 О 3 , СаО, МgО, содержащиеся в пустой породе руды, полностью переходят в шлак. В шлаке содержится также часть невосстановившихся окислов SiO 2 , МnО, FеО и СаS. Шлак образуется постепенно, его состав изменяется по мере отекания в горн; где он скапливается на поверхности жидкого чугуна благодаря меньшей плотности. Состав шлака зависит от состава применяющихся шихтовых материалов и выплавляемого чугуна.

По мере скопления чугуна и шлака их выпускают из печи. Чугун выпускают через 3 … 4 ч, а шлак через 1,0 … 1,5 ч. Чугун выпускают через чугунную летку 16 (см. рис. 1.4, отверстие в кладке, расположенное выше лещади), а шлак – через шлаковую летку 17. Чугунную летку открывают бурильной машиной, а после выпуска чугуна закрывают огнеупорной массой. Чугун и шлак сливают по желобам, проложенным по литейному двору, в чугуновозные ковши и шлаковозные чаши, установленные на железнодорожных платформах. Емкость чугуновозных ковшей 90…140 т. В них чугун транспортируют в кислородно-конвертерные или мартеновские цехи для передела в сталь. Чугун, не используемый в жидком виде, поступает на разливочные машины. Из ковша чугун через передаточный желоб заполняет металлические формы-изложницы разливочной машины и затвердевает в них в виде чушек-слитков массой 45 кг.

Часто жидкий шлак из доменной печи не сливают в шлаковозные чаши, а для удобства дальнейшего использования подвергают мокрой грануляции: на него направляют струю воды, сод действием которой он рассыпается на мелкие гранулы.

Продукты доменной плавки. В доменных печах получают два жидких продукта – чугун и шлак, а также колошниковый газ.

Чугун – основной продукт доменной плавки. В доменных печах получают чугун различного химического состава в зависимости от его назначения.

Передельный чугун выплавляют для передела его в сталь в конвертерах или мартеновских печах. Он содержит 4,0…4,4 % С; до 0,6…0,8 % Si; до 0,25 … 1,0 % Мn; 0,15 … 0,3 % Р и 0,03 … 0,07 % S. Передельный чугун некоторых марок, предназ­наченный для передела в сталь в конвертерах, имеет пониженное содержание фосфора (до 0,07 %).

Литейный чугун используют для переплава его на ма­шиностроительных заводах при производстве фасонных отливок. Он содержит повышенное количество кремния (до 2,75 … 3,25 %). Кроме чугуна, в доменной печи выплавляют ферросплавы.

Доменные ферросплавы – сплавы железа с крем­нием, марганцем и другими металлами. Их применяют для рас­кисления и легирования стали. К ним относятся: доменный ферросилиций с 9…13 % Si и до 3 % Мn; доменный ферромарганец с 70… 75 % Мn и до 2 % Si; зеркальный чугун с 10 … 25 % Мn и до 2 % Si.

Побочными продуктами доменной плавки являются шлак и колошниковый газ, также используемые в производстве. Из шлака производят шлаковату, шлакоблоки, цемент, а колошниковый газ после очистки от пыли используют как топливо для нагрева воздуха, вдуваемого в доменную печь, а также в цехах металлургических заводов.

Важнейшие технико-экономические показатели. Такими показателями работы доменных печей являются коэффициент ис­пользования полезного объема доменной печи (К. И. II. О) и удельный расход кокса. Коэффициент использования полезного объема печи (К. И. П. О. в м 3 /т) определяется как отношение полезного объема печи V (в м 3) к ее среднесуточной производительности Р и тоннах выплавленного передельного чугуна.

К. И. П. O. = V /P

Чем выше производительность доменной печи, тем ниже К. И. П. О., который для большинства доменных печей в нашей стране составляет 0,5 … 0,7.

Удельный расход кокса K – отношение расхода А кокса за сутки к количеству Р в тоннах передельного чугуна, выплавленного за то же время:

В нашей стране удельный расход кокса в доменных печах составляет 0,5 … 0,7; он является важным показателем работы доменной печи, так как стоимость кокса составляет более 50 % общей стоимости чугуна.

Улучшение технико-экономических показателей работы доменных печей является одной из важнейших задач металлургического производства. Эта задача решается повышением производительности доменных печей путем улучшения их конструкций, способов подготовки шихты, интенсификации доменного процесса.

Основным направлением в развитии современного доменного процесса является увеличение полезного объема доменных печей. Практика показывает, что с увеличением объема печей улучшаются технико-экономические показатели их работы. Поэтому у нас в России эксплуатируют доменные печи объемом 2300 и 2700 м 3 и даже 5000 м 3 (Печь «Северянка» в г.Череповце). Такие печи выплавляют в сутки более 10 000 т чугуна.

Улучшение подготовки шихтовых материалов – обогащение руд, применение при плавке офлюсованного агломерата и окатышей обеспечивает прирост выплавки чугуна и снижает расход кокса. Например, увеличение содержания железа вшихте на 1 % дает прирост выплавки чугуна на 3 % и снижает расход кокса на 1,5…2,0 %; применение агломерата повышает производительность печей на 10…15 %, а замена агломерата окатышами снижает расход топлива и дополнительно увеличивает выплавку чугуна еще на 5 … 8 %. Вместе с тем повышение производительности доменных печей достигается интенсификацией процесса плавки за счет следующего:

1) повышения давления газа на колошнике до 0,18 МН м 2 , в результате чего снижается скорость их движения а шахте доменной печи, улучшаются условия восстановления железа, снижается расход кокса и уменьшается вынос колошниковой пыли:

2) обогащения дутья кислородом, благодаря чему повышается интенсивность горения кокса, повышается температура в горне доменной печи, ускоряются процессы восстановления кремния и марганца, что особенно важно при выплавке доменных ферросплавов и литейных чугунов;

3) вдувания в горн природного газа и угольной пыли, что позволяет снизить расход кокса на 10 – 15%, увеличить производительность печей на 2 – 3% за счет повышения восстановительной способности газов.

1. 6. Производство стали

Стали – железоуглеродистые сплавы, содержащие практически до 1,5 % углерода. Кроме углерода, сталь всегда содержит в небольших количествах постоянные примеси: марганец (до 0,8 %), кремний (до 0,4 %), фос­фор (до 0,07 %), серу (до 0,06 %), что связано с особен­ностями технологии ее выплавки. В технике широко применяют также легированные стали, в состав которых для улучшения качества дополнительно вводят хром, никель и другие элементы. Существует свыше 1500 ма­рок углеродистых и легированных сталей – конструк­ционных, инструментальных, нержавеющих и т. д.

Технология выплавки чугуна в индукционной электропечи

В крупных зарубежных литейных цехах, где смонтированы индукционные установки для плавки чугуна, как уже указывалось выше, операции загрузки шихты в печи механизированы и автоматизированы.

Подача материалов в печь производится в определённой последовательности. Например, через каждые 20 минут в печь загружается 200 кг стального скрапа, 160 кг возврата и чушкового чугуна, через каждые 40 минут в печь вводится 22 кг кокса до тех пор, пока в чугуне не будет обеспечено требуемое содержание углерода.

Шихта не должна падать в тигель с большей высоты во избежание его повреждения. Лучше, если шихта сползает. Сползание шихты может быть обеспечено с помощью склизов, вибрационных конвейеров, бадьёй специальных конструкций. Удар шихты о футеровку должен быть боковым, а не верхним, так как в первом случае футеровка работает на сжатие, а во втором на срез, причём при этом ударной нагрузке подвергается наиболее хрупкая ошлакованная часть футеровки. Шихта перед загрузкой, как правило, подогревается, но если этого нет шихта влажная и загрязнена маслом, эмульсиями, то рекомендуется наполнять её так, чтобы влажный лом не погружался сразу же в жидкий металл во избежание выбросов. Вообще же первую порцию сырого материала следует загружать при отключенной печи, когда движения металла в ней нет.
Плавка в индукционной печи может быть прерывной и непрерывной. При непрерывной плавке количество жидкого металла, выдаваемого из печи за один раз, составляет 70-80%, а иногда и 100%. Преимуществом этого способа плавки является малое время реакции между расплавом и огнеупорной футеровкой при высоких температурах. Благодаря тому типичная реакция SiO2+2C_←^→2CO+Si не получает должного развития. Другим преимуществом этого вида плавки является возможность сокращения количества проб металла для химического анализа и уменьшения времени на сопутствующие операции. Существенным недостатком прерывной плавки является уменьшение мощности печи при периодическом опорожнении. Вследствие этого при режиме плавки ёмкость печи выбирается несколько большей, чем она была бы выбрана при другом режиме и при одинаковой потребности в металле за определённый промежуток времени.
При непрерывной плавке (из печи за один раз выдаётся не более 1^10всего металла) уменьшение потребляемой мощности не наблюдается. Замеры температуры и определение химического состава делаются через более длительные промежутки времени. При таком способе плавке можно автоматизировать работу печи и добиться оптимальной работы агрегата. При непрерывной плавке металла в печи величина кусков шихты должна быть не особенно мала, чтобы не наблюдалось очень быстрого растворения. Это необходимо для того, чтобы обслуживающий персонал смог за это время ввести легирующие, науглероживающие, раскисляющие и другие добавки с учётом температуры металла.
Большое значение при плавке чугуна в индукционной печи имеет правильный выбор режима в зависимости от ёмкости печи, производительности, величины кусков шихты, потребности в металле и т.д.

При выборе частоты тока в индукционной печи необходимо учитывать ёмкость печи, величину кусков шихты и т.д. Так, например, печь малой ёмкости имеет лучшее показатели при высоких частотах, а печь большей ёмкости – при низких. Если же печь работает на частотах меньших, чем оптимальная (при данных размерах печи), то будет наблюдаться сильное перемешивание металла, что может привести к увеличению количества неметаллических включений в металле. Кроме того, наблюдается большая потеря металла за счёт его окисления. В этом случае некоторые виды скрапа (например, стружка, если в печи нет жидкого металла) не могут быть применены, а срок службы футеровки сокращается втрое. При частоте, выше оптимальной, перемешивание ванны металла очень слабое, что отражается на гомогенности металла, находящегося в печи.

С повышением частоты можно применять более мелкие куски шихты. Если, однако, в печи есть жидкий металл, то это условие можно не соблюдать. При данной требуемой производительности печи с понижением частоты тока потребляемая мощность становится меньше. С увеличением ёмкости эта разность увеличивается. Удельный расход энергии у печей промышленной частоты меньше, чем у высокочастотных печей. Исключением являются печи ёмкостью менее 1т. Рекомендуется вести плавку в печи только тогда, когда она заполнена металлом не менее, чем на ⅔ высоты. В этом случае процент используемой энергии близок к 100.
Перегрев металла в печах промышленной и промежуточной частоты протекает быстро. Скорость перегрева в первых 10°С /мин, во вторых – 30°С/мин. После достижения в печи необходимой температуры металла следует подавать ток небольшой силы. В печах большой ёмкости (10-15т) для поддержания температуры металла постоянной требуется 20-30 кВт ч на тонну жидкого металла в час. Для нагрева чугуна до 1200°С необходимо 410-430 кВт ч на тонну.

Получение синтетического чугуна. Синтетическим называют чугун, получаемый в индукционных печах путём переплавки стружки, стальной обрези и других малоценных отходов с дальнейшим науглероживанием расплава и доведением его химсостава до заданного. В работе приведены результаты исследований процесса получения синтетического чугуна из стружки в индукционной высокочастотной печи с кислым тиглем ёмкостью 150кг.

Установлено, что общий угар металла определяется номенклатурой шихтовых материалов и их окисленностью, способом ввода ферросплавов и карбюризатора, температурой нагрева и выдержкой металла. При выплавке чугунов из стальной стружки угар металла меньше по сравнению с выплавкой из чугунной в 2-2,5 раза; при вводе ферросплавов и карбюризатора в завалку он меньше примерно в 1,5 раза, чем при вводе в жидкий металл. Так как стружка всегда в какой-то степени загрязнена, различают весовой и истинный угар металла. Для определения последнего весь образующийся шлак собирали, взвешивали и анализировали. По этим данным рассчитывали количество в нём окислов Fe,Mn,Cr,Si, вносимых шихтой, а разницу относили на засоренность шихты. Истинный угар металла меньше весового на 20-25%. Истинный угар при выплавке синтетических чугунов из стальной стружки составлял от 0,3 до 6,2%, а из чугунной 5,3-9,0%. Авторы это объясняют большей поверхностью и окисленностью чугунной стружки по сравнению со стальной, что подтверждается и количеством образующегося шлака и содержанием в нём окислов Fe, Mn, Si.

Степень и скорость усвоения ферросплавов и карбюризатора, равно как и угар элементов, зависят от способа их ввода, температуры нагрева и выдержки металла. В качестве карбюризатора использовали бой графитовых электродов. Степень и скорость усвоения углерода зависят ещё от размера кусков карбюризатора: если они больше 40мм-скорость усвоения углерода уменьшается на 20-25%. Скорость усвоения углерода жидким металлом с 1,3-1,62%С, 0,15-0,46%Si при 1400-1470°С достигает 0,12% в минуту, в среднем 0,09%, продолжительность науглероживания до 3,2-3,6%С составляет 22-34 минуты, усвояемость углерода из электродного боя – 80-85%.

Для ввода в расплав Si использовали Cu45. Угар Si при вводе Cu45 в жидкий металл выше, чем при вводе в завалку, в 1,4-1,5 раза, он почти не зависит от выдержки металла, но изменяется с нагревом. Кремний выгорает только до 1420-1450°С, а при дальнейшем нагреве восстанавливается углеродом, и при 1500-1550°С наблюдается его пригар с образованием окиси углерода. Скорость усвоения Si малоуглеродистым жидким чугуном с 1,3-1,62%С 0,15-0,46%Si при 1420-1460°C составляет в среднем 0,1% в минуту, а высокоуглеродистым чугуном при этой же температуре – только 0,04% в минуту. Общий угар Si не превышает 25%, а при вводе ферросилиция в жидкий малоуглеродистый чугун составляет в среднем 14,1%.

Марганец усваивается из Mn 1 на 80-90% со скоростью (при 1460°С) 0,1% в минуту; угар Mn для большинства плавок не превышает 18% и зависит от способа ввода ферромарганца, от температуры нагрева и почти не зависит от выдержки. При вводе ферромарганца в жидкий металл одновременно с ферросилицием и боем электродов Mn горит меньше, чем при вводе в заливку. Степень и скорость усвоения Cr жидким чугуном определяется температурой и при 1365°С составляет 0,08%, а при 1470°С-0,18% в минуту, угар равен 31,5 и 5,5% соответственно.
Максимальное содержание серы в чугунах, выплавленных из стальной стружки, составляет 0,055%, а для большинства плавок не превышает 0,03%. При выдержке чугуна количество серы почти не изменяется, а при нагреве выше 1450°С несколько понижается. При 0,093% S в чугунной стружке содержание S в чугуне не превышает 0,07%. Содержание фосфора в чугунах выплавленных из стальной стружки, очень низкое, но несколько выше, чем в самой стружке; при нагреве металла содержание фосфора увеличивается в результате восстановления углеродом из окислов.

Механические свойства синтетических чугунов несколько выше ваграночных с равным углеродным эквивалентом C_э, зависят от исходных шихтовых материалов, состава, температуры нагрева и выдержки металла. Структура синтетических чугунов при близких температурах заливки зависит не только от их состава, но и от исходных шихтовых материалов. У чугунов с равным C_э структура металлической основы примерно одинаковая, но форма и количество графита зависят от исходных шихтовых материалов. Так, у чугунов, полученных из стальной стружки, включения графита крупные, изолированные и компактные, либо это очень длинные слабо завихренные пластины с притупленными окончаниями. Напротив, у чугунов, полученных из чугунной стружки, пластины графита мелкие и средние, сильно завихренные, пересекающиеся между собой. Разница в количестве и форме графита при равном C_э и близких температурах заливки сказывается на механических свойствах: у чугунов, выплавленных из стальной стружки, они более высокие, чем у чугунов из чугунной стружки. Прочность при разрыве и изгибе и твёрдость с увеличением C_э уменьшаются, а стрела прогиба увеличивается в связи с появлением феррита в структуре. При перегреве чугуна снижается твёрдость, увеличивается прочность при изгибе и стрела прогиба, но почти не изменяется прочность при разрыве. Это связанно с уменьшением в металле газов, особенно азота, и неметаллических включений.

Содержание азота в чугунах из стальной стружки несколько выше, чем в ваграночных и синтетических, выплавленных из чугунной стружки. Это объясняется болеем высоким процентом азота в самой стружке и внесением его ферросплавами, которых при этом вводится в несколько раз больше. Кислорода во всех синтетических чугунах почти столько же, сколько и в ваграночных, а в некоторых случаях даже значительно меньше. Содержание водорода несколько выше.

Наиболее важным металлургическим процессом при плавке синтетического чугуна в индукционной электропечи является науглероживание расплава, так как вся технико-экономическая целесообразность применения индукционных электропечей основана на применении в качестве шихтовых материалов стружки и других малоценных отходов. Науглероживание металла можно производить загрузкой углеродосодержащих добавок прямо в шихту, что, например, часто наблюдается в американской практике. На одном из заводов науглероживание проводится коксом, загружаемым или в шихту, или непосредственно в жидкий металл. При науглероживании коксом усвоение углерода в металле ниже требуемого, то в ванну металла вводят графит, а если оно завышено – добавляется стальной скрап. Дополнительное науглероживание, как правило, приходится производить в среднем для одной плавки из десяти. При надлежащем уровне шихтовки обеспечивается постоянный состав чугуна с заданным содержанием углерода в течение всей смены независимо от остатка металла в печи. Рекомендуется также вводить пылевидный графит в струе газа на зеркало металла с последующей продувкой газа. Можно вводить углеродосодержащие добавки в специальном встряхивающем ковше. После того как содержание углерода поднялось до необходимого значения, целесообразно довести и содержание кремния до желаемого. Усвоение углерода металла в значительной степени зависит от времени его растворения, температуры металла и химического состава исходного металла. Растворение углерода – процесс, идущий с поглощением тепла. Поэтому в период науглероживания необходимо поддерживать температуру металла. Если науглероживание вещества вводятся на ванну жидкого металла, то предварительно необходимо тщательно очистить зеркало металла от шлака.

Большая работа по изучению процессов науглероживания проведена в институте проблем литья АН УССР.
Экспериментальная работа большей частью проводилась в литейном цехе каунасского завода «Центролит » . Опытные плавки вели в тигельных индукционных электропечах с кислой футеровкой ИЧМ-1А, ИЧТ-6, ASEA-8, ёмкостью 1,6, и 8т. В качестве шихтовых материалов применяли дроблёную стальную и чугунную стружку, ферросилиций Cu45 и Cu75, науглероживающие реагенты: бой электродов, электродный порошок, сланцевый кокс, графит.
Электромагнитное перемешивание жидкого сплава в электропечах промышленной частоты оказывает сильное влияние на процесс науглероживания. Установлено, что высокая интенсивность перемешивания в значительной степени способствует быстрому и полному усвоению карбюризатора(рис. 1а). науглероживание является эндотермическим процессом. Поэтому происходит падение температуры в среднем на 50°С на 1% усвоенного углерода.

В результате исследования четырёх карбюризаторов: боя электродов, сланцевого кокса, тигельного графита, электродного порошка – и обработки опубликованных данных по растворимости углеродосодержащих материалов установлена общая для карбюризаторов зависимость усвоения углерода жидким сплавом от содержания углерода в реагенте (рис. 1б). усвоение науглероживателя в печах промышленной частоты вследствие электромагнитного перемешивания на 7-8% выше, чем в высокочастотных печах. Размер частиц реагента для печей ёмкостью 6-8т рекомендуется в пределах 5-10мм, так как более мелкие частицы и пылевидная фракция подвергаются распылению и окислению, а крупные частицы растворяются в металле длительное время.

Сравнение технологических режимов загрузки карбюризатора по двум вариантам: 1 – периодическое введение вместе с шихтой и 2 – введение карбюризатора в конце плавки – показало, что периодическое добавление науглероживателя сокращает продолжительность плавки в среднем на 5 минут на 1т выплавляемого чугуна, снижает расход электроэнергии в среднем на 38 кВт ч/т, хотя даёт несколько меньшее усвоение реагента жидким сплавом (3,71% против 3,85%). Способ периодического введения карбюризатора признан более экономичным.

Десульфурация чугуна . Если чугун из индукционной печи идёт на переработку в высокопрочный, то необходимо проводить десульфурацию металла. Десульфурация ведётся различными реагентами, вводимыми в металл в струе газа, или другими способами. Весьма эффективно, как уже отмечалось, вести десульфурацию карбидом кальция CaC2, вводимым в металл. Рекомендуется также в металл вводить соду в парообразном или измельчённом состоянии. После обработки металла десульфурирующими реагентами содержание серы в печи снижается до 0,001-0,015%. Степень десульфурации увеличивается с повышением температуры металла, что объясняется уменьшением его вязкости и увеличением скорости диффузии. При очень высоких температурах, около 1600°С, наблюдается частичное снижение степени десульфурации как вследствие реакции карбида кальция с кислородом воздуха и с футеровкой тигля, так и вследствие спекания карбида кальция при 1550°С.
Степень десульфурации зависит и от первоначального содержания серы в чугуне, с понижением которого требуется относительно большой расход карбида кальция. Если серы в исходном чугуне менее 0,04%, то расход обессеривающей добавки очень велик. Чем выше содержание углерода в чугуне, теми лучше обессеривающие действие карбида кальция. Образующийся под действием карбида кальция свободный углерод растворяется в жидком чугуне или выделяется из него в зависимости от его эвтектичности и температуры; практически науглероживание чугуна не наблюдается или эффект его невелик.

В ванну индукционной печи карбид кальция вводится порциями. Крупные зёрна обессеривают чугун лучше, чем мелкие, в противоположность другим способам десульфурации. При постоянном применении карбида кальция следует учитывать понижение стойкости кислой футеровки.

про литье читать тут

Профессиональные мужские инструменты
Добавить комментарий