Пределом текучести называют напряжение, соответствующее остаточному значению удлинения после снятия нагрузки. Определение этой величины необходимо для выбора металлов, используемых в производстве. Если не учесть рассматриваемый параметр, то это может привести к интенсивному процессу развития деформации в неправильно выбранном материале. Очень важно учитывать пределы текучести при конструировании различных металлических конструкций.
- Физическая характеристика
- Предел текучести труб
- Растяжение материалов
- Расчет ПТ
- Что такое условный предел текучести?
- Текучесть расплава
- Временное сопротивление на разрыв
- Что представляет собой ПТ для арматуры?
- Предел текучести сталей
- Заключение
- Каким образом производится испытание на прочность?
- Виды пределов прочности
- Формирование понятия о пределе прочности металлов
- Предел прочности стали
- Прочность меди
- Прочность алюминия
- Прочность железа
Физическая характеристика
Пределы текучести относятся к показателям прочности. Они представляют собой макропластическую деформацию с довольно малым упрочнением. Физически этот параметр можно представить как характеристику материала, а именно: напряжение, которое отвечает нижнему значению площадки текучести в графике (диаграмме) растяжения материалов. Это же можно представить в виде формулы: σ Т =P Т /F 0 , где P Т означает нагрузку предела текучести, а F 0 соответствует первоначальной площади поперечного сечения рассматриваемого образца. ПТ устанавливает так называемую границу между упруго-пластической и упругой зонами деформирования материала. Даже незначительное увеличение ПТ) вызовет существенную деформацию. Пределы текучести металлов принято измерять в кг/мм 2 либо Н/м 2 . На величину данного параметра оказывают влияние разные факторы, например, режим термообработки, толщина образца, наличие легирующих элементов и примесей, тип, микроструктура и дефекты кристаллической решетки и прочее. Предел текучести значительно меняется при изменении температуры. Рассмотрим пример практического значения данного параметра.
Предел текучести труб
Наиболее наглядным является влияние данной величины при строительстве трубопроводов систем высокого давления. В таких конструкциях должна использоваться специальная сталь, у которой достаточно большие пределы текучести, а также минимальные показатели разрыва между данным параметром и Чем больше у стали предел, тем, естественно, более высоким должен быть показатель допустимой величины рабочего напряжения. Данный факт оказывает прямое влияние на значение прочности стали, и соответственно, всей конструкции в целом. В связи с тем что параметр допустимой расчетной величины системы напряжений оказывает непосредственное влияние на необходимое значение толщины стен в используемых трубах, то важно максимально точно рассчитывать характеристики прочности стали, которая будет использоваться при изготовлении труб. Одним из наиболее аутентичных методов определения данных параметров является проведение исследования на разрывном образце. Во всех случаях требуется учитывать разницу значений рассматриваемого показателя, с одной стороны, и допустимыми значениями напряжений — с другой.
Кроме того, следует знать, что предел текучести металла всегда устанавливается в результате проведения детальных многоразовых замеров. А вот систему допустимых напряжений в подавляющем большинстве принимают исходя из нормативов или вообще в результате проведенных технических условий, а также опираясь на личный опыт производителя. В системах магистральных трубопроводов весь нормативный сборник описан в СНиП II-45—75. Итак, установка коэффициента запаса прочности — довольно сложная и весьма важная практическая задача. Корректное определение этого параметра всецело зависит от точности рассчитанных величин напряжения, нагрузки, а также предела текучести материала.
При выборе теплоизоляции систем трубопроводов также опираются на данный показатель. Это связано с тем, что эти материалы непосредственно вступают в контакт с металлической основой трубы, и, соответственно, могут принимать участие в электрохимических процессах, пагубно влияющих на состояние трубопровода.
Растяжение материалов
Предел текучести при растяжении определяет, при какой величине напряжение останется неизменным либо снизится, несмотря на удлинение. То есть данный параметр достигнет критической отметки тогда, когда произойдет переход от упругой к пластической области деформации материала. Получается, что предел текучести можно определить путем проведения тестирования стержня.
Расчет ПТ
В сопротивлении материалов пределом текучести является напряжение, при котором начинается развиваться Давайте рассмотрим, каким образом производится расчет этой величины. В опытах, проводимых с цилиндрическими образцами, определяют значение нормального напряжения в поперечном сечении в момент возникновения необратимой деформации. Таким же методом в опытах с кручением трубчатых образцов производят определение предела текучести при сдвиге. Для большинства материалов этот показатель определяется формулой σ Т =τ s √3. В некоторых экземплярах непрерывное удлинение цилиндрического образца на диаграмме зависимости нормальных напряжений от относительного удлинения приводит к обнаружению так называемого зуба текучести, то есть резкого снижения напряжения перед образованием пластической деформации.
Более того, дальнейший рост такого искажения до определенного значения происходит при постоянном напряжении, которое называют физическим ПТ. Если площадка текучести (горизонтальный участок графика) имеет большую протяженность, то такой материал называют идеально-пластическим. Если диаграмма не имеет площадки, то образцы называют упрочняющимися. В таком случае невозможно точно указать значение, при котором возникнет пластическая деформация.
Что такое условный предел текучести?
Давайте разберемся, что же это за параметр. В тех случаях, когда диаграмма напряжений не имеет выраженных площадок, требуется определять условный ПТ. Итак, это значение напряжения, при котором относительная остаточная деформация равна 0,2 процента. Для его вычисления на диаграмме напряжений по оси определения ε необходимо отложить величину, равную 0,2. От этой точки проводится начальному участку. В результате точка пересечения прямой с линией диаграммы определяет значение условного предела текучести для конкретного материала. Также данный параметр называют техническим ПТ. Кроме того, отдельно выделяют условные пределы текучести при кручении и изгибе.
Текучесть расплава
Этот параметр определяет способность расплавленных металлов заполнять линейные формы. Текучесть расплава для металлических сплавов и металлов имеет свой термин в металлургической промышленности — жидкотекучесть. По сути, это величина, обратная Международная система единиц (СИ) выражает текучесть жидкости в Па -1 *с -1 .
Временное сопротивление на разрыв
Давайте рассмотрим, каким образом определяется данная характеристика механических свойств. Прочностью называют способность материала при определенных пределах и условиях воспринимать различные воздействия, не разрушаясь. Механические свойства принято определять при помощи условных диаграмм растяжений. Для испытаний следует использовать стандартные образцы. Приборы для испытаний оснащаются устройством, которое записывает диаграмму. Повышение нагрузок сверх нормы вызывает существенную пластическую деформацию в изделии. Предел текучести и временное сопротивление на разрыв соответствуют наибольшей нагрузке, предшествующей полному разрушению образца. У пластичных материалов деформация сосредотачивается на одном участке, где появляется местное сужение поперечного сечения. Его еще называют шейкой. В результате развития множественных скольжений в материале образуется большая плотность дислокаций, а также возникают так называемые зародышевые несплошности. Вследствие их укрупнений в образце возникают поры. Сливаясь между собой, они образуют трещины, которые распространяются в поперечном направлении к оси растяжения. И в критический момент образец полностью разрушается.
Что представляет собой ПТ для арматуры?
Эти изделия являются неотъемлемой составной частью железобетона, предназначаемые, как правило, для сопротивления растягивающим усилиям. Обычно используют стальную арматуру, но бывают и исключения. Эти изделия должны работать совместно с массой бетона на всех без исключения стадиях загрузки данной конструкции, обладать пластичными и прочными свойствами. А также отвечать всем условиям индустриализации данных видов работ. Механические свойства стали, используемой при изготовлении арматуры, установлены соответствующим ГОСТом и техническими условиями. ГОСТ 5781-61 предусматривает четыре класса данных изделий. Первые три предназначены для обычных конструкций, а также ненапрягаемых стержней у предварительно напряженных системах. Предел текучести арматуры в зависимости от класса изделия может достигать 6000 кг/см 2 . Так, у первого класса этот параметр составляет примерно 500 кг/см 2 , у второго — 3000 кг/см 2 , у третьего 4000 кг/см 2 , а у четвертого — 6000 кг/см 2 .
Предел текучести сталей
Для сортового проката в базовом исполнении ГОСТ 1050-88 предусматривается следующие значения ПТ: марка 20 — 25 кгс/мм 2 , марка 30 — 30 кгс/мм 2 , марка 45 — 36 кгс/мм 2 . Однако для этих же сталей, изготавливаемых по предварительному согласованию потребителя и изготовителя, пределы текучести могут иметь иные значения (тот же ГОСТ). Так, 30 будет иметь ПТ в размере от 30 до 41 кгс/мм 2 , а марки 45 — в пределах 38-50 кгс/мм 2 .
Заключение
При проектировании различных (зданий, мостов и прочих) предел текучести используют в качестве показателя стандарта прочности при проведении расчетов значений допустимых нагрузок соответственно указанному коэффициенту запаса прочности. А вот для сосудов, находящихся под давлением, величину допустимой нагрузки рассчитывают на основе ПТ, а также прочности на разрыв, с учетом спецификации условий эксплуатации.
Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла.
Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.
Упругая и пластическая деформация, разрушение
Если напряжение, приложенное к металлическому образцу, не слишком велико, то его деформация оказывается упругой – стоит снять напряжение, как его форма восстанавливается. Некоторые металлические конструкции намеренно проектируют так, чтобы они упруго деформировались. Так, от пружин обычно требуется довольно большая упругая деформация. В других случаях упругую деформацию сводят к минимуму. Мосты, балки, механизмы, приборы делают по возможности более жесткими. Упругая деформация металлического образца пропорциональна силе или сумме сил, действующих на него. Это выражается законом Гука, согласно которому напряжение равно упругой деформации, умноженной на постоянный коэффициент пропорциональности, называемый модулем упругости: s = ∆ Y , где s – напряжение, ∆ – упругая деформация, а Y – модуль упругости (модуль Юнга). Модули упругости ряда металлов представлены в табл. 1.
Таблица 1
Металл | Вольфрам | Железо (сталь) | Медь | Алюминий | Магний | Свинец |
Механические свойства, 10 5 МПа | 0,70 | 0,45 | 0,18 |
Пользуясь данными этой таблицы, можно вычислить, например, силу, необходимую для того, чтобы растянуть стальной стержень квадратного поперечного сечения со стороной 1 см на 0,1% его длины:
F = 200 000 МПа х 1 см 2 х 0,001 = 20 000 Н (= 20 кН)
Когда к металлическому образцу прикладываются напряжения, превышающие его предел упругости, они вызывают пластическую (необратимую) деформацию, приводящую к необратимому изменению его формы. Более высокие напряжения могут вызвать разрушение материала.
Важнейшим критерием при выборе металлического материала, от которого требуется высокая упругость, является предел текучести. У самых лучших пружинных сталей практически такой же модуль упругости, как и у самых дешевых строительных, но пружинные стали способны выдерживать гораздо большие напряжения, а следовательно, и гораздо большие упругие деформации без пластической деформации, поскольку у них выше предел текучести.
Пластические свойства металлического материала (в отличие от упругих) можно изменять путем сплавления и термообработки. Так, предел текучести железа подобными методами можно повысить в 50 раз. Чистое железо переходит в состояние текучести уже при напряжениях порядка 40 МПа, тогда как предел текучести сталей, содержащих 0,5% углерода и несколько процентов хрома и никеля, после нагревания до 950 С 0 и закалки может достигать 2000 МПа.
Когда металлический материал нагружен с превышением предела текучести, он продолжает деформироваться пластически, но в процессе деформирования становится более твердым, так что для дальнейшего увеличения деформации требуется все больше повышать напряжение. Такое явление называется деформационным или механическим упрочнением (а также наклепом). Его можно продемонстрировать, скручивая или многократно перегибая металлическую проволоку. Деформационное упрочнение металлических изделий часто осуществляется на заводах. Листовую латунь, медную проволоку, алюминиевые стержни можно холодной прокаткой или холодным волочением довести до уровня твердости, который требуется от окончательной продукции.
Бернштейн М.Л., Займовский В.А. Механические свойства металлов . М., 1979
Уайэтт О.Г., Дью-Хьюз Д. Металлы, керамики, полимеры . М., 1979
Павлов П.А. Механические состояния и прочность материалов . Л., 1980
Соболев Н.Д., Богданович К.П. Механические свойства материалов и основы физики прочности . М., 1985
Жуковец И.И. Механические испытания металлов . М., 1986
Бобылев А.В. Механические и технологические свойства металлов . М., 1987
Предел прочности — максимальное напряжение, которому может подвергаться материал до момента его разрушения. Если говорить о данном показателе по отношению к металлам, то здесь он равен соотношению критической нагрузки к площади его поперечного сечения при проведении теста на разрыв. В целом же прочность показывает, какая сила требуется для преодоления и разрыва внутренних связей между молекулами материала.
Каким образом производится испытание на прочность?
Тестирование металлов на прочность выполняется при помощи специализированных механизмов, которые позволяют устанавливать необходимую мощность при испытаниях на разрыв. Состоят такие машины из специального нагружающего элемента, с помощью которого создается необходимое усилие.
Оборудование для испытания металлов на прочность дает возможность производить растяжение тестируемых материалов и устанавливать определенные величины усилия, которое прилагается к образцу. На сегодняшний день существуют гидравлические и механические типы механизмов для испытания материалов.
Виды пределов прочности
Предел прочности является одним из основных свойств материалов. Информация о предельной прочности тех или иных материалов является крайне важной при необходимости определения возможностей их применения в тех или иных промышленных сферах.
Выделяют несколько отдельных пределов прочности материалов:
- при сжатии;
- при изгибе;
- при кручении;
- при растяжении.
Формирование понятия о пределе прочности металлов
О пределе прочности в свое время говорил еще Галилей, который определил, что гранично-допустимый предел сжатия и растяжения материалов зависит от показателя их поперечного сечения. Благодаря исследованиям ученого возникла ранее неизведанная величина — напряжение разрушения.
Современное учение о прочности металлов сформировалось в средине XX века, что было необходимо исходя из потребности в разработке научного подхода для предотвращения возможных разрушений промышленных сооружений и машин во время их эксплуатации. До этого момента при определении прочности материала учитывалась лишь степень его пластичности и упругости и совершенно не учитывалась внутренняя структура.
Предел прочности стали
Сталь является основным сырьевым материалом в большинстве промышленных сфер. Широко применяется она в строительстве. Именно поэтому для выполнения конкретных задач очень важно заблаговременно подбирать высококачественный, действительно подходящий тип стали. От правильного расчета предела прочности определенной марки стали напрямую зависит результат и качество выполненных работ.
Как пример можно привести несколько значений предельных показателей прочности сталей. Данные значения основаны на требованиях государственных стандартов и представляют собой рекомендуемые параметры. Так, для изделий, отлитых из конструкционной нелегированной стали, предусмотрен стандарт ГОСТ 977-88, согласно которому, предельное значение прочности при испытании на растяжение составляет порядка 50-60 кг/мм 2 , что равняется примерно 400-550 МПа. Аналогичная марка стали после прохождения процедуры закалки приобретает значение сопротивления на растяжение более 700 МПа.
Объективный предел прочности стали 45 (или любой другой марки материала, в равной степени как и железа или чугуна, а также остальных сплавов металла) зависит от целого ряда факторов, которые должны определяться исходя из поставленных задач, что ложатся на материал при его применении.
Прочность меди
В обычных условиях комнатной температуры отожженная техническая медь обладает пределом прочности порядка 23 кг/мм 2 . При значительных температурных нагрузках на материал его предельная прочность существенно снижается. На показателях предельной прочности меди отражается наличие в металле всевозможных примесей, которые могут как повышать данный показатель, так и приводить к его снижению.
Прочность алюминия
Отожженная фракция технического алюминия при комнатной температуре отличается пределом прочности до 8 кг/мм 2 . Повышение чистоты материала увеличивает его пластичность, но отражается на снижении прочности. В качестве примера можно взять алюминий, показатель чистоты которого составляет 99,99%. В данном случае предельная прочность материала достигает около 5 кг/мм 2 .
Уменьшение предела прочности алюминиевой тестовой заготовки наблюдается при ее нагревании во время проведения испытаний на растяжение. В свою очередь, снижение температуры металла в пределах от +27 до -260 о С временно повышает исследуемый показатель в 4 раза, а при испытании фракции алюминия высочайшей чистоты — в целых 7 раз. В то же время несколько повысить прочность алюминия можно методом его легирования.
Прочность железа
На сегодняшний день методом промышленной и химической обработки удалось получить нитевидные кристаллы железа с пределом прочности до 13 000 Мпа. Наряду с этим, прочность технического железа, которое широко применяется в самых разнообразных сферах, составляет близко 300 МПа.
Естественно, каждый образец материала при его исследовании на уровень прочности обладает своими дефектами. На практике доказано, что реальная объективная предельная прочность любого металла, независимо от его фракции, меньше по сравнению с данными, полученными в ходе теоретических расчетов. Данную информацию необходимо обязательно принимать во внимание при выборе определенного типа и марки металла для выполнения конкретных задач.