Гибка металлов при изготовлении конструкций. Изготовление нежестких обечаек

Рисунок 2.22 – Схема потери устойчивости формы при гибке нежестких обечаек

с изменением (а) начальной формы и без изменения (б)

По мере увеличения длины вылета листа (рис. 2.22, а) кривизна выходной ветви уменьшается (кривые 1, 2, 3) и, достигнув немного больше четверти окружности, лист теряет устойчивость и падает (кривая 4). Если же лист при гибке не изменяет резко своей формы, но под действием собственной массы сильно изгибается (рис. 2.22, кривые 3, 4) продолжать процесс гибки нельзя. Поэтому для исключения деформации от собственной массы и вызываемого ее искажения поперечного сечения при вальцевании применяют телескопические боковые роликовые опоры и верхние поддерживающие устройства (рис. 2.23).

Рисунок 2.23 – Приспособление для сохранения формы нежесткой обечайки при ее гибке

Регулируемость положения роликовых опор и поддерживающего устройства позволяет вальцевать нежесткие обечайки различных диаметров. Приспособление для сохранения формы нежестких обечаек действует следующим образом. Обечайка 2 гнется валками 5 листогибочной машины. По мере гибки конец изогнутой обечайки сначала поддерживается левым роликом 1 и предупреждает ее запрокидывание, а затем поддерживается трубой 3, устанавливаемой на нужной высоте винтом 4. Правый ролик 1 поддерживает изогнутый конец обечайки на завершающей стадии гибки.

Процесс изготовления нежестких обечаек в остальной части совпадает с описанным выше типовым технологическим процессом на изготовление жестких обечаек с обязательным применением для операции планочных прижимов вместо струбцин и стяжек, а также разжимных колец.

При проведении вальцовки обечаек на вальцах следует предупреждать образование следующих дефектов:

а) перекос кромок, проявляющийся при не соблюдении параллельности торцевой кромки листа с осями валков во время установки листа в вальцах;

б) перегиб на радиус, меньше заданного;

в) овальность, которая возникает вследствие неравномерности прижатия листа по всей длине;

г) конусность, являющаяся дефектом станка при непараллельности расположения осей валков;

д) бочкообразность, которая возникает при чрезмерном давлении на валки, вызывающем искривление последних.

Гибка конических обечаек и конических днищ . Кроме цилиндрических обечаек в аппаратостроении часто встречаются конические обечайки и днища по ГОСТ 12619-78, 12620-78, 12621-78, 12622-78, 12623-78, 12524-78. Типовые представители таких деталей представлены на рис. 2.24.

Рисунок 2.24 – Конические обечайки и заготовки для них:

а – с углом конуса b < 60°; б – с углом конуса b > 60°

Размеры плоской заготовки конической обечайки рассчитывают по следующим формулам:

длина образующей, мм

радиусы развертки, мм

угол развертки, рад

длина хорды (длина листа), мм

высота развертки, мм

высота внешней стрелки, мм

Конические обечайки имеют непараллельные образующие, поэтому круговая гибка конуса между цилиндрическими валками приводит к отклонению линий изгиба с направлением образующих. Для согласования их и получения правильного конуса нужно гибку конических обечаек выполнять на вальцах с коническими валками, вершина которых совпала бы с вершиной угла конуса заготовки. Однако такие условия требуют значительного усложнения конструкции и удорожания ее.

При индивидуальном и мелкосерийном изготовлении конических деталей аппаратов можно пользоваться листогибочными машинами с цилиндрическими валками. Для этого осуществляют наклон верхнего (среднего) валка у симметричной трехвалковой машины или бокового валка у асимметричной трех- и четырехвалковой машин.

При проектировании процесса гибки конических деталей аппаратов необходимо учитывать следующие ограничения: 1) проекция малого диаметра конуса на вертикальную ось должна быть больше диаметра верхнего валка; 2) конусы, имеющие развертку более 150°, нельзя изготавливать из одного целого листа, их следует выполнять гибкой из отдельных частей с последующей сваркой.

Расчет параметров настройки валков при гибке конических обечаек .

Схема гибки на трехвалковой машине с симметричным расположением валков с наклоном верхнего валка показана на рис. 2.25.

Угол наклона верхнего валка

где f 1 и f 2 – прогибы наружной и внутренней кромок конической обечайки; b – длина образующей конуса.

Значения f 1 и f 2 определяют по формулам, мм

Углы a 1 и a 2 определяют из уравнений

Рисунок 2.25 – Схема гибки конических обечаек на трехвалковых

листогибочных вальцах (с наклоном верхнего валка)

Радиусы изгиба в торцовых сечениях определяют из равенств, мм

Константы упрочнения n и m берут из таблицы, а остальные – из чертежа (см. рис. 22.6).

Величина смещения заднего подшипника для получения заданного R 1 , мм

N З П = s – f 1 + a tg w ,

а смещение переднего подшипника для получения R 2 , мм

N П П = s – f 2 – (L – a ) tg w .

При гибке на трехвалковой листогибочной машине с асимметричным расположением валков, т.е. с вертикальной регулировкой боковых валков, угол наклона определяют по формуле, но значения прогибов наружной и внутренней кромок (сечений) обечаек определяют по следующим формулам, мм:

Углы a 1 и a 2 , радиусы R 1 и R 2 , смещения N З П и N П П определяются по формулам для гибки конусов с перемещением верхнего валка.

Выбор способа и оборудования для изготовления конических обечаек и днищ зависит от многих конструктивных и технологических факторов – от серийности производства, размеров изготовляемых конических обечаек, соотношения их геометрических размеров, материала, из которого они изготовляются, от требований к точности геометрической формы, состоянию поверхности заготовок и готовых изделий и т.п.

В большинстве случаев конические обечайки относятся к классу тонкостенных деталей. Формообразование таких деталей ведется несколькими способами, которые характеризуются видом инструментов, оборудования и обладают определенными возможностями, преимуществами и недостатками.

В условиях крупносерийного производства конические обечайки небольших размеров или конические обечайки с небольшим диаметром малого основания усеченного конуса изготовляют методом свободной гибки в универсальных штампах с сопряженными по форме пуансоном и матрицей.

Для изготовления штамповкой конических обечаек с углом при вершине 2a < 60° применяют технологию, по которой конус формируется за два перехода. Формообразование конуса производится в штампе со стационарной матрицей с горизонтальной осью симметрии и с револьверным поворотным вокруг горизонтальной оси составным пуансоном. На первом переходе заготовку укладывают на матрицу и пуансоном из заготовки формируют корытообразную деталь. Затем пуансонный блок поворачивают вокруг оси, над матрицей устанавливают второй пуансон, представляющий собой полуматрицу, такую же, как начальная матрица, и доформовывают конус. Такой процесс высокопроизводителен, обеспечивает высокую точность, однако выгоден только в условиях массового и крупносерийного производства.

Тонкостенные конусы в тресте «Южтехмонтаж» изготовливались методом протаскивания через формирующее кольцо. К заготовке конуса в месте его будущей вершины приваривается петля, за которую цеплялся крюк. При подъеме заготовка упирается в формирующее кольцо, в результате чего образуется конус. Подъем продолжается до момента совмещения кромок, после чего производится прихватка стыка электросваркой.

Для крупносерийного производства конических обечаек разработаны трехвалковые машины со сменными коническими валками и их консольным расположением. Угол наклона валков регулируется от 0 до 15°, что обеспечивает гибку обечаек с центральным углом до 180°, с длиной образующей до 1300 мм и толщиной до 10 мм.

При гибке конических обечаек на листоправильных машинах технологический процесс их изготовления соответствует технологическому процессу изготовления цилиндрических обечаек.

Для изготовления конусов с максимальным диаметром основания конуса до 5600 мм, с длиной образующей до 3000 мм используют метод свертывания . Заготовку с углом развертки, меньшим и равным 180°, укладывают на тележку, предварительно установив поворотные кронштейны в такое положение, при котором они поддерживают края заготовки, свисающие с тележки. Струбцины устанавливают так, чтобы угол между ними был равен углу развертки заготовки, а консольные балки струбцин были обращены вниз. Затем тележку с заготовкой перемещают влево, заводя края заготовки в струбцины таким образом, чтобы радиальные кромки заготовки выступали с противоположной стороны. После этого заготовку зажимают с помощью силовых цилиндров, подъемным механизмом поднимают свисающую часть заготовки и тем самым задают направление ее гибки. При движении струбцин происходит сведение кромок заготовки по углу a и одновременный поворот ее краев вокруг осей. По окончании гибки кромки соединяют сваркой.


Раздел : Разное

Иногда возникает задача – изготовить защитный зонт для вытяжной или печной трубы, вытяжной дефлектор для вентиляции и т.п. Но прежде чем приступить к изготовлению, надо сделать выкройку (или развертку) для материала. В интернете есть всякие программы для расчета таких разверток. Однако задача настолько просто решается, что вы быстрее рассчитаете ее с помощью калькулятора (в компьютере), чем будете искать, скачивать и разбираться с этими программами.

Начнем с простого варианта – развертка простого конуса. Проще всего объяснить принцип расчета выкройки на примере.

Допустим, нам надо изготовить конус диаметром D см и высотой H сантиметров. Совершенно понятно, что в качестве заготовки будет выступать круг с вырезанным сегментом. Известны два параметра – диаметр и высота. По теореме Пифагора рассчитаем диаметр круга заготовки (не путайте с радиусом готового конуса). Половина диаметра (радиус) и высота образуют прямоугольный треугольник. Поэтому:

Итак, теперь мы знаем радиус заготовки и можем вырезать круг.

Вычислим угол сектора, который надо вырезать из круга. Рассуждаем следующим образом: Диаметр заготовки равен 2R, значит, длина окружности равна Пи*2*R – т.е. 6.28*R. Обозначим ее L. Окружность полная, т.е. 360 градусов. А длина окружности готового конуса равна Пи*D. Обозначим ее Lm. Она, естественно, меньше чем длина окружности заготовки. Нам нужно вырезать сегмент с длиной дуги равной разности этих длин. Применим правило соотношения. Если 360 градусов дают нам полную окружность заготовки, то искомый угол должен дать длину окружности готового конуса.

Из формулы соотношения получаем размер угла X. А вырезаемый сектор находим путем вычитания 360 – Х.

Из круглой заготовки с радиусом R надо вырезать сектор с углом (360-Х). Не забудьте оставить небольшую полоску материала для нахлеста (если крепление конуса будет внахлест). После соединения сторон вырезанного сектора получим конус заданного размера.

Например: Нам нужен конус для зонта вытяжной трубы высотой (Н) 100 мм и диаметром (D) 250 мм. По формуле Пифагора получаем радиус заготовки – 160 мм. А длина окружности заготовки соответственно 160 x 6,28 = 1005 мм. В тоже время длина окружности нужного нам конуса – 250 x 3,14 = 785 мм.

Тогда получаем, что соотношение углов будет такое: 785 / 1005 x 360 = 281 градус. Соответственно вырезать надо сектор 360 – 281 = 79 градусов.

Расчет заготовки выкройки для усеченного конуса.

Такая деталь бывает нужна при изготовлении переходников с одного диаметра на другой или для дефлекторов Вольперта-Григоровича или Ханженкова. Их применяют для улучшения тяги в печной трубе или трубе вентиляции.

Задача немного осложняется тем, что нам неизвестна высота всего конуса, а только его усеченной части. Вообще же исходных цифр тут три: высота усеченного конуса Н, диаметр нижнего отверстия (основания) D, и диаметр верхнего отверстия Dm (в месте сечения полного конуса). Но мы прибегнем к тем же простым математическим построениям на основе теоремы Пифагора и подобия.

В самом деле, очевидно, что величина (D-Dm)/2 (половина разности диаметров) будет относиться с высотой усеченного конуса Н так же, как и радиус основания к высоте всего конуса, как если бы он не был усечен. Находим полную высоту (P) из этого соотношения.

(D – Dm)/ 2H = D/2P

Отсюда Р = D x H / (D-Dm).

Теперь зная общую высоту конуса, мы можем свести решение задачи к предыдущей. Рассчитать развертку заготовки как бы для полного конуса, а затем «вычесть» из нее развертку его верхней, ненужной нам части. А можем рассчитать непосредственно радиусы заготовки.

Получим по теореме Пифагора больший радиус заготовки – Rz. Это квадратный корень из суммы квадратов высоты P и D/2.

Меньший радиус Rm – это квадратный корень из суммы квадратов (P-H) и Dm/2.

Длина окружности нашей заготовки равна 2 х Пи х Rz, или 6,28 х Rz. А длина окружности основания конуса – Пи х D, или 3,14 х D. Соотношение их длин и дадут соотношение углов секторов, если принять, что полный угол в заготовке – 360 градусов.

Т.е. Х / 360 = 3,14 x D / 6.28 x Rz

Отсюда Х = 180 x D / Rz (Это угол, который надо оставить, что бы получить длину окружности основания). А вырезать надо соответственно 360 – Х.

Например: Нам надо изготовить усеченный конус высотой 250 мм, диаметр основание 300 мм, диаметр верхнего отверстия 200 мм.

Находим высоту полного конуса Р: 300 х 250 / (300 – 200) = 600 мм

По т. Пифагора находим внешний радиус заготовки Rz: Корень квадратный из (300/2)^2 + 6002 = 618,5 мм

По той же теореме находим меньший радиус Rm: Корень квадратный из (600 – 250)^2 + (200/2)^2 = 364 мм.

Определяем угол сектора нашей заготовки: 180 х 300 / 618,5 = 87.3 градуса.

На материале чертим дугу с радиусом 618,5 мм, затем из того же центра – дугу радиусом 364 мм. Угол дуги может имеет примерно 90-100 градусов раскрытия. Проводим радиусы с углом раскрытия 87.3 градуса. Наша заготовка готова. Не забудьте дать припуск на стыковку краев, если они соединяются внахлест.

Вальцовка обечаек – важнейший технологический процесс, без которого нельзя даже представить производство цилиндрических деталей. Рассмотрим более подробно его особенности, технологию и используемый инструмент.

1 Терминология и суть вальцовки

В первую очередь необходимо немного разобраться с основными понятиями. Вальцеванием называется обработка металлической заготовки давлением, в результате чего равномерно изменяется ее форма по всей длине. Это неотъемлемый этап производства многих деталей. Проводят такую операцию специальным инструментом – вальцовкой. После подобной обработки получают готовые детали либо заготовки, которые поступают на штамповку.

Обечайка – это конический либо цилиндрический конструкционный элемент. Он может быть выполнен в виде обода, кольца, недлинной трубы или барабана. Используются эти элементы при изготовлении котлов, различных резервуаров, баков, а также в иных металлоконструкциях. Для изготовления обечаек используют цветные, черные металлы и их сплавы.

2 Технология и особенности дефектов

В зависимости от геометрических размеров детали и прочностных характеристик металла вальцовка проводится с подгибом либо без подгиба листа. Также на эти параметры обращают внимание и при выборе оборудования. Изготавливаются обечайки следующих размеров: толщина находится в пределах от 3 до 100 мм, длина элемента 30–3100 мм, а их диаметр по наружной стороне колеблется от 20 до 280 см. Во время такой деформации напряжения в металле достигают своих предельных значений.

Состоит эта операция из двух стадий – гибки и непосредственно вальцовки . Отличие последней – перемещение гибки по всему периметру обрабатываемой детали. При этом сначала металл подвергается упругой, а затем пластической деформации. С уменьшением радиуса загибания будут возрастать усилия, а все из-за увеличения слоя металла, принимающего участие в волочении.

После вальцевания обечаек в металле могут возникнуть внутренние напряжения, которые существуют трех видов. Между отдельными зонами сечения и частями детали появляются зональные. Они наиболее опасны, так как способствуют возникновению различных дефектов, таких как коробление и трещины. Зависят они от градиента температур, возникающего между разными частями детали во время температурного воздействия.

Напряжения второго рода или, как их еще называют, структурные можно наблюдать среди зерен и внутри них. Возникает подобное явление из-за неодинаковых коэффициентов линейного расширения. Кроме того, способствует появлению напряжений второго рода и образование новых фаз различных объемов. Напряжения третьего рода возникают внутри объема нескольких ячеек кристаллической решетки.

Все эти напряжения имеют различную природу образования, при этом одинаковые последствия – искажение кристаллической решетки и возникновение упругих деформаций.

Устранить проблемы можно с помощью термообработки, так как в результате нагрева и охлаждения изменяется характер этих явлений. Например, во время повышения температуры поверхностные слои расширяются, а вот непрогретая сердцевина препятствует подобному. В результате возникают напряжения сжатия. При охлаждении все процессы происходят в обратном порядке. Поверхностные слои имеют меньшую температуру, в отличие от более глубоких, и подвержены напряжениям растяжения. После окончательного охлаждения температура выравнивается во всем объеме металла, но это вовсе не означает, что эти явления будут устранены. В детали могут сохраниться еще некоторые напряжения, они называются остаточными.

Чем еще полезна термическая обработка, такая как отпуск? Особенно потребность в ней испытывают , которым свойственно структурно-напряженное состояние. После повышения температуры материал становится более пластичным. С увеличением температуры должна быть более длительной и сама операция. При этом снимаются напряжения в большей степени.

3 Что справится с вальцеванием обечаек?

Вальцевание цилиндрических элементов возможно только при использовании или машин. Ручным способом проводить гибку обечаек недопустимо. Также чтобы получить высококачественную деталь, необходимо строго придерживаться технологии вальцовки обечаек.

Для изготовления этих конструкционных элементов на производстве огромной популярностью пользуются трехвалковые вальцы. Они могут быть как ручными, так и иметь механический либо электрический привод. В основном встречается расположение валков в виде треугольника: один сверху и два снизу. В зависимости от необходимых параметров готовой обечайки различаются диаметры валков. Отличаются они еще и длиной вальцевания, она может быть как 340, так и 2000 мм.

Естественно, на электрическом оборудовании работать значительно проще, однако и его стоимость на порядок выше, поэтому если в ваши планы не входит постоянное производство обечаек, то приобретать столь дорогостоящие машины нет смысла. Еще существуют устройства с одним плавающим валком. В этом случае вальцовка будет относительно этого элемента, который служит оправкой для получения обечаек заданного диаметра. Главный недостаток таких машин – необходимость постоянно перенастраивать и сменять рабочий инструмент, если нужно получить деталь иного размера.

Профессиональные мужские инструменты
Добавить комментарий