Центр системной оптимизации бизнеса и управления качеством – факторный анализ. Факторный анализ прибыли Что дает факторный анализ

Общие определения

Целью дисперсионного анализа (ANOVA – Analysis of Variation) является проверка значимости различия между средними в разных группах с помощью сравнения дисперсий этих групп. Разделение общей дисперсии на несколько источников (связанных с различными эффектами в плане), позволяет сравнить дисперсию, вызванную различием между группами, с дисперсией, вызванной внутригрупповой изменчивостью.

Содержание
  1. Проверяемая гипотеза состоит в том, что различия между группами нет. При истинности нулевой гипотезы, оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. При ложности – значимо отклоняться.
  2. В целом дисперсионный анализ может быть разделён на несколько видов:
  3. одномерный (одна зависимая переменная) и многомерный (несколько зависимых переменных);
  4. однофакторный (одна группирующая переменная) и многофакторный (несколько группирующих переменных) с возможным взаимодействием между факторами;
  5. с простыми измерениями (зависимая переменная измеряется лишь один раз) и с повторными (зависимая переменная измеряется несколько раз).
  6. В STATISITICA реализованы все известные модели дисперсионного анализа.
  7. в начало
  8. Пошаговый пример в STATISTICA
  9. Мы будем иллюстрировать возможности дисперсионного анализа в STATISITICA, рассматривая пошаговый модельный пример.
  10. Исходный файл данных описывает совокупность людей с разным уровнем дохода, образования, возраста и пола. Рассмотрим, как влияют уровень образования, возраст и пол на уровень дохода.
  11. По возрасту все люди были разделены на четыре группы:
  12. до 30 лет;
  13. от 31 до 40 лет;
  14. от 41 до 50 лет;
  15. от 51 года.
  16. По уровню образования произошло деление на 5 групп:
  17. незаконченное среднее;
  18. среднее;
  19. среднее профессиональное;
  20. незаконченное высшее;
  21. высшее.
  22. Так как данные модельные, то полученные результаты будут носить в основном качественный характер и иллюстрировать способ проведения анализа.
  23. Шаг 1. Выбор анализа
  24. Выберем дисперсионный анализ из меню: Анализ -> Углубленные методы анализа -> Общие линейные модели.
  25. Рис. 1. Выбор дисперсионного анализа из выпадающего меню STATISTICA
  26. Далее откроется окно, в котором представлены различные виды анализа. Выбираем Вид анализа – Факторный Дисперсионный анализ.
  27. Рис. 2. Выбор вида анализа
  28. В этом окне также можете выбрать способ построения модели: диалоговый режим или использовать мастер анализа. Выберем диалоговый режим.
  29. Шаг 2. Задание переменных
  30. Из открытого файла данных выберем переменные для анализа, щелкните кнопку Переменные, выберете:
  31. Доход – зависимая переменная,
  32. Уровень образования, Пол и Возраст – категориальные факторы (предикторы).
  33. Заметим, что Коды факторов в этом простом примере можно не задавать. При нажатии на кнопку OK, STATISTICA задаст их автоматически.
  34. Рис. 3. Задание переменных
  35. Шаг 3. Изменение опций
  36. Обратимся к вкладке Опции в окне GLM Факторный ДА.
  37. Рис. 4. Вкладка Опции
  38. В этом диалоговом окне вы можете:
  39. выбрать случайные факторы;
  40. задать тип параметризации модели;
  41. указать тип сумм квадратов (SS), имеется 6 различных сумм квадратов (SS);
  42. включить проведение кросс-проверки.
  43. Оставим все установки по умолчанию (этого достаточно в большинстве случаев) и нажмём кнопку ОК.
  44. Шаг 4. Анализ результатов – просмотр всех эффектов
  45. Результаты анализа можно посмотреть в окне Результаты с помощью вкладок и группы кнопок. Рассмотрим, например, вкладку Итоги.
  46. Рис. 5. Окно анализа результатов: вкладка Итоги
  47. С этой вкладки можно получить доступ ко всем основным результатам. Воспользуйтесь остальными вкладками для получения дополнительных результатов. Кнопка Меньше позволяет изменить диалоговое окно результатов, удалив вкладки, которые, как правило, не используются.
  48. При нажатии кнопки Проверить все эффекты получаем следующую таблицу.
  49. Рис. 6. Таблица всех эффектов
  50. Эта таблица выводит основные результаты анализа: суммы квадратов, степени свободы, значения F-критерия, уровни значимости.
  51. Для удобства исследования значимые эффекты (p<.05) выделены красным цветом. Два главных эффекта (Уровень образования и Возраст) и некоторые взаимодействия в данном примере являются значимыми (p<.05).
  52. Шаг 5. Анализ результатов – просмотр заданных эффектов
  53. Чтобы посмотреть, каким образом средний уровень дохода различается по категориям, удобнее всего воспользоваться графическими средствами. При нажатии на кнопку Все эффекты/графики появится следующее диалоговое окно.
  54. Рис. 7. Окно Таблица всех эффектов
  55. В окне перечислены все рассматриваемые эффекты. Статистически значимые эффекты помечены *.
  56. Например, выберем эффект Возраст, в группе Отображать укажем Таблицу и нажмём ОК. Появится таблица, в которой для каждого уровня эффекта приведено среднее значение зависимой переменной (Доход), величина стандартной ошибки и границы доверительных пределов.
  57. Рис. 8. Таблица с описательными статистиками по уровням переменной Возраст
  58. Эту таблицу удобно представить в графическом виде. Для этого выберем График в группе Отображать диалогового окна Таблица всех эффектов и нажмём ОК. Появится соответствующий график.
  59. Рис. 9. График зависимости среднего дохода от возраста
  60. Из графика ясно видно, что между группами людей разного возраста есть разница в уровне дохода. Чем выше возраст, тем больше доход.
  61. Аналогичные операции проведём для взаимодействия нескольких факторов. В диалоговом окне выберем Пол*Возраст и нажмём ОК.
  62. Рис. 10. График зависимости среднего дохода от пола и возраста
  63. Получен неожиданный результат: для опрошенных людей в возрасте до 50 лет уровень дохода растёт с возрастом и не зависит от пола; для опрошенных людей старше 50 лет женщины имеют значимо больший доход, чем мужчины.
  64. Стоит построить полученный график в разрезе уровня образования. Возможно, такая закономерность нарушается в некоторых категориях или, наоборот, носит универсальный характер. Для этого выберем Уровень образования * Пол* Возраст и нажмём ОК.
  65. Рис. 11. График зависимости среднего дохода от пола, возраста, уровня образования
  66. Видим, что полученная зависимость не характерна для среднего и среднего профессионального образования. В остальных случаях она справедлива.
  67. Шаг 6. Анализ результатов – оценка качества модели
  68. Выше в основном использовались графические средства дисперсионного анализа. Рассмотрим некоторые другие полезные результаты, которые можно получить.
  69. Во-первых, интересно посмотреть, какую долю изменчивости объясняют рассматриваемые факторы и их взаимодействия. Для этого во вкладке Итоги нажмём на кнопку Общая R модели. Появится следующая таблица.
  70. Рис. 12. Таблица SS модели и SS остатков
  71. Число в столбце Множеств. R2 – квадрат множественного коэффициента корреляции; оно показывает, какую долю изменчивости объясняет построенная модель. В нашем случае R2 = 0.195, что говорит о невысоком качестве модели. В самом деле, на уровень дохода влияют не только факторы, внесённые в модель.
  72. Шаг 7. Анализ результатов – анализ контрастов
  73. Часто требуется не только установить различие в среднем значении зависимой переменной для разных категорий, но и установить величину различия для заданных категорий. Для этого следует исследовать контрасты.
  74. Выше было показано, что уровень дохода для мужчин и женщин значимо отличается для возраста от 51, в остальных случаях различие не значимо. Выведем разницу в уровне дохода для мужчин и женщин в возрасте выше 51 года и между 40 и 50 годами.
  75. Для этого перейдём во вкладку Контрасты и выставим все значения следующим образом.
  76. Рис. 13. Вкладка Контрасты
  77. При нажатии кнопки Вычислить появится несколько таблиц. Нас интересует таблица с оценками контрастов.
  78. Рис. 14. Таблица Оценки контрастов
  79. Можно сделать следующие выводы:
  80. для мужчин и женщин старше 51 года разница в уровне дохода составляет 48,7 тыс. долл. Разница значима;
  81. для мужчин и женщин в возрасте от 41 до 50 лет разница в уровне дохода составляет 1,73 тыс. долл. Разница не значима.
  82. Аналогично можно задать более сложные контрасты или воспользоваться одним из заранее заданных наборов.
  83. Шаг 8. Дополнительные результаты
  84. Используя остальные вкладки окна результатов можно получить следующие результаты:
  85. средние значения зависимой переменной для выбранного эффекта – вкладка Средние;
  86. проверка апостериорных критериев (post hoc) – вкладка Апостериорные;
  87. проверка сделанных для проведения дисперсионного анализа предположений – вкладка Предположения;
  88. построение профилей отклика/желательности – вкладка Профили;
  89. анализ остатков – вкладка Остатки;
  90. вывод матриц, используемых в анализе – вкладка Матрицы;
  91. ФАКТОРНЫЙ АНАЛИЗ

Проверяемая гипотеза состоит в том, что различия между группами нет. При истинности нулевой гипотезы, оценка дисперсии, связанной с внутригрупповой изменчивостью, должна быть близкой к оценке межгрупповой дисперсии. При ложности – значимо отклоняться.

В целом дисперсионный анализ может быть разделён на несколько видов:

  • одномерный (одна зависимая переменная) и многомерный (несколько зависимых переменных);

  • однофакторный (одна группирующая переменная) и многофакторный (несколько группирующих переменных) с возможным взаимодействием между факторами;

  • с простыми измерениями (зависимая переменная измеряется лишь один раз) и с повторными (зависимая переменная измеряется несколько раз).

В STATISITICA реализованы все известные модели дисперсионного анализа.

В STATISITICA дисперсионный анализ можно провести с помощью модуля Дисперсионный анализ в блоке STATISITICA Base (Анализ -> Дисперсионный анализ(ДА)) . Для построения модели специального вида используется полная версия Дисперсионного анализа, представленная в модулях Общие линейные модели , Обобщённые линейные и нелинейные модели , Общие регрессионные модели , Общие модели частных наименьших квадратов из блока Углубленные методы анализа (STATISTICA Advanced Linear/Non-Linear Models ).

в начало

Пошаговый пример в STATISTICA

Мы будем иллюстрировать возможности дисперсионного анализа в STATISITICA , рассматривая пошаговый модельный пример.

Исходный файл данных описывает совокупность людей с разным уровнем дохода, образования, возраста и пола. Рассмотрим, как влияют уровень образования, возраст и пол на уровень дохода.

По возрасту все люди были разделены на четыре группы:

  • до 30 лет;

  • от 31 до 40 лет;

  • от 41 до 50 лет;

  • от 51 года.

По уровню образования произошло деление на 5 групп:

  • незаконченное среднее;

  • среднее;

  • среднее профессиональное;

  • незаконченное высшее;

  • высшее.

Так как данные модельные, то полученные результаты будут носить в основном качественный характер и иллюстрировать способ проведения анализа.

Шаг 1. Выбор анализа

Выберем дисперсионный анализ из меню: Анализ -> Углубленные методы анализа -> Общие линейные модели .

Рис. 1. Выбор дисперсионного анализа из выпадающего меню STATISTICA

Далее откроется окно, в котором представлены различные виды анализа. Выбираем Вид анализа Факторный Дисперсионный анализ .

DA_18

Рис. 2. Выбор вида анализа

В этом окне также можете выбрать способ построения модели: диалоговый режим или использовать мастер анализа. Выберем диалоговый режим.

Шаг 2. Задание переменных

Из открытого файла данных выберем переменные для анализа, щелкните кнопку Переменные , выберете:

Доход – зависимая переменная,

Уровень образования , Пол и Возраст – категориальные факторы (предикторы).

Заметим, что Коды факторов в этом простом примере можно не задавать. При нажатии на кнопку OK , STATISTICA задаст их автоматически.

DA_19

Рис. 3. Задание переменных

Шаг 3. Изменение опций

Обратимся к вкладке Опции в окне GLM Факторный ДА .

DA_20

Рис. 4. Вкладка Опции

В этом диалоговом окне вы можете:

  • выбрать случайные факторы;

  • задать тип параметризации модели;

  • указать тип сумм квадратов (SS), имеется 6 различных сумм квадратов (SS);

  • включить проведение кросс-проверки.

Оставим все установки по умолчанию (этого достаточно в большинстве случаев) и нажмём кнопку ОК .

Шаг 4. Анализ результатов – просмотр всех эффектов

Результаты анализа можно посмотреть в окне Результаты с помощью вкладок и группы кнопок. Рассмотрим, например, вкладку Итоги .

DA_21

Рис. 5. Окно анализа результатов: вкладка Итоги

С этой вкладки можно получить доступ ко всем основным результатам. Воспользуйтесь остальными вкладками для получения дополнительных результатов. Кнопка Меньше позволяет изменить диалоговое окно результатов, удалив вкладки, которые, как правило, не используются.

При нажатии кнопки Проверить все эффекты получаем следующую таблицу.

DA_22

Рис. 6. Таблица всех эффектов

Эта таблица выводит основные результаты анализа: суммы квадратов, степени свободы, значения F-критерия, уровни значимости.

Для удобства исследования значимые эффекты (p<.05) выделены красным цветом. Два главных эффекта (Уровень образования и Возраст ) и некоторые взаимодействия в данном примере являются значимыми (p<.05).

Шаг 5. Анализ результатов – просмотр заданных эффектов

Чтобы посмотреть, каким образом средний уровень дохода различается по категориям, удобнее всего воспользоваться графическими средствами. При нажатии на кнопку Все эффекты/графики появится следующее диалоговое окно.

DA_23

Рис. 7. Окно Таблица всех эффектов

В окне перечислены все рассматриваемые эффекты. Статистически значимые эффекты помечены *.

Например, выберем эффект Возраст , в группе Отображать укажем Таблицу и нажмём ОК . Появится таблица, в которой для каждого уровня эффекта приведено среднее значение зависимой переменной (Доход) , величина стандартной ошибки и границы доверительных пределов.

DA_24

Рис. 8. Таблица с описательными статистиками по уровням переменной Возраст

Эту таблицу удобно представить в графическом виде. Для этого выберем График в группе Отображать диалогового окна Таблица всех эффектов и нажмём ОК . Появится соответствующий график.

DA_25

Рис. 9. График зависимости среднего дохода от возраста

Из графика ясно видно, что между группами людей разного возраста есть разница в уровне дохода. Чем выше возраст, тем больше доход.

Аналогичные операции проведём для взаимодействия нескольких факторов. В диалоговом окне выберем Пол *Возраст и нажмём ОК .

DA_26

Рис. 10. График зависимости среднего дохода от пола и возраста

Получен неожиданный результат: для опрошенных людей в возрасте до 50 лет уровень дохода растёт с возрастом и не зависит от пола; для опрошенных людей старше 50 лет женщины имеют значимо больший доход, чем мужчины.

Стоит построить полученный график в разрезе уровня образования. Возможно, такая закономерность нарушается в некоторых категориях или, наоборот, носит универсальный характер. Для этого выберем Уровень образования * Пол * Возраст и нажмём ОК .

qpzq_27

Рис. 11. График зависимости среднего дохода от пола, возраста, уровня образования

Видим, что полученная зависимость не характерна для среднего и среднего профессионального образования. В остальных случаях она справедлива.

Шаг 6. Анализ результатов – оценка качества модели

Выше в основном использовались графические средства дисперсионного анализа. Рассмотрим некоторые другие полезные результаты, которые можно получить.

Во-первых, интересно посмотреть, какую долю изменчивости объясняют рассматриваемые факторы и их взаимодействия. Для этого во вкладке Итоги нажмём на кнопку Общая R модели . Появится следующая таблица.

Рис. 12. Таблица SS модели и SS остатков

Число в столбце Множеств. R2 – квадрат множественного коэффициента корреляции; оно показывает, какую долю изменчивости объясняет построенная модель. В нашем случае R2 = 0.195, что говорит о невысоком качестве модели. В самом деле, на уровень дохода влияют не только факторы, внесённые в модель.

Шаг 7. Анализ результатов – анализ контрастов

Часто требуется не только установить различие в среднем значении зависимой переменной для разных категорий, но и установить величину различия для заданных категорий. Для этого следует исследовать контрасты.

Выше было показано, что уровень дохода для мужчин и женщин значимо отличается для возраста от 51, в остальных случаях различие не значимо. Выведем разницу в уровне дохода для мужчин и женщин в возрасте выше 51 года и между 40 и 50 годами.

Для этого перейдём во вкладку Контрасты и выставим все значения следующим образом.

DA_29

Рис. 13. Вкладка Контрасты

При нажатии кнопки Вычислить появится несколько таблиц. Нас интересует таблица с оценками контрастов.

DA_30

Рис. 14. Таблица Оценки контрастов

Можно сделать следующие выводы:

  • для мужчин и женщин старше 51 года разница в уровне дохода составляет 48,7 тыс. долл. Разница значима;

  • для мужчин и женщин в возрасте от 41 до 50 лет разница в уровне дохода составляет 1,73 тыс. долл. Разница не значима.

Аналогично можно задать более сложные контрасты или воспользоваться одним из заранее заданных наборов.

Шаг 8. Дополнительные результаты

Используя остальные вкладки окна результатов можно получить следующие результаты:

  • средние значения зависимой переменной для выбранного эффекта – вкладка Средние ;

  • проверка апостериорных критериев (post hoc) – вкладка Апостериорные ;

  • проверка сделанных для проведения дисперсионного анализа предположений – вкладка Предположения ;

  • построение профилей отклика/желательности – вкладка Профили ;

  • анализ остатков – вкладка Остатки ;

  • вывод матриц, используемых в анализе – вкладка Матрицы ;

  • ФАКТОРНЫЙ АНАЛИЗ

    Идея факторного анализа

    При исследовании сложных объектов, явлений, систем факторы, определяющие свойства этих объектов, очень часто невозможно измерить непосредственно, а иногда неизвестно даже их число и смысл. Но для измерения могут быть доступны другие величины, так или иначе зависящие от интересующих нас факторов. Причем, когда влияние неизвестного интересующего нас фактора проявляется в нескольких измеряемых признаках или свойствах объекта, эти признаки могут обнаруживать тесную связь между собой и общее число факторов может быть гораздо меньше, чем число измеряемых переменных.

    Для выявления факторов, определяющих измеряемые признаки объектов, используются методы факторного анализа

    В качестве примера применения факторного анализа можно указать изучение свойств личности на основе психологических тестов. Свойства личности не поддаются прямому измерению. О них можно судить только по поведению человека или характеру ответов на вопросы. Для объяснения результатов опытов их подвергают факторному анализу, который и позволяет выявить те личностные свойства, которые оказывают влияние на поведение индивидуума.
    В основе различных методов факторного анализа лежит следующая гипотеза: наблюдаемые или измеряемые параметры являются лишь косвенными характеристиками изучаемого объекта, в действительности существуют внутренние (скрытые, латентные, не наблюдаемые непосредственно) параметры и свойства, число которых мало и которые определяют значения наблюдаемых параметров. Эти внутренние параметры принято называть факторами.

    Цель факторного анализа – сконцентрировать исходную информацию, выражая большое число рассматриваемых признаков через меньшее число более ёмких внутренних характеристик явления, которые, однако, не поддаются непосредственному измерению

    Установлено, что выделение и последующее наблюдение за уровнем общих факторов даёт возможность обнаруживать предотказные состояния объекта на очень ранних стадиях развития дефекта. Факторный анализ позволяет отслеживать стабильность корреляционных связей между отдельными параметрами. Именно корреляционные связи между параметрами, а также между параметрами и общими факторами содержат основную диагностическую информацию о процессах. Применение инструментария пакета Statistica при выполнении факторного анализа исключает необходимость использования дополнительных вычислительных средств и делает анализ наглядным и понятным для пользователя.

    Результаты факторного анализа будут успешными, если удается дать интерпретацию выявленных факторов, исходя из смысла показателей, характеризующих эти факторы. Данная стадия работы весьма ответственная; она требует чёткого представления о содержательном смысле показателей, которые привлечены для анализа и на основе которых выделены факторы. Поэтому при предварительном тщательном отборе показателей для факторного анализа следует руководствоваться их смыслом, а не стремлением к включению в анализ как можно большего их числа.

    Сущность факторного анализа

    Приведём несколько основных положений факторного анализа. Пусть для матрицы Х измеренных параметров объекта существует ковариационная (корреляционная) матрица C , где р – число параметров, n – число наблюдений. Путем линейного преобразования X =QY +U можно уменьшить размерность исходного факторного пространства Х до уровня Y , при этом р “<<р . Это соответствует преобразованию точки, характеризующей состояние объекта в j -мерном пространстве, в новое пространство измерений с меньшей размерностью р “. Очевидно, что геометрическая близость двух или множества точек в новом факторном пространстве означает стабильность состояния объекта.

    Матрица Y содержит ненаблюдаемые факторы, которые по существу являются гиперпараметрами, характеризующими наиболее общие свойства анализируемого объекта. Общие факторы чаще всего выбирают статистически независимыми, что облегчает их физическую интерпретацию. Вектор наблюдаемых признаков Х имеет смысл следствия изменения этих гиперпараметров.

    Матрица U состоит из остаточных факторов, которые включают в основном ошибки измерения признаков x (i ). Прямоугольная матрица Q содержит факторные нагрузки, определяющие линейную связь между признаками и гиперпараметрами.
    Факторные нагрузки – это значения коэффициентов корреляции каждого из исходных признаков с каждым из выявленных факторов. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак – на обратную) связь данного признака с фактором.

    Таким образом, данные о факторных нагрузках позволяют сформулировать выводы о наборе исходных признаков, отражающих тот или иной фактор, и об относительном весе отдельного признака в структуре каждого фактора.

    Модель факторного анализа похожа на модели многомерного регрессионного и дисперсионного анализа. Принципиальное отличие модели факторного анализа в том, что вектор Y – это ненаблюдаемые факторы, а в регрессионном анализе – это регистрируемые параметры. В правой части уравнения (8.1) неизвестными являются матрица факторных нагрузок Q и матрица значений общих факторов Y.

    Для нахождения матрицы факторных нагрузок используют уравнениеQQ т =S–V, где Q т – транспонированная матрица Q, V – матрица ковариаций остаточных факторов U, т.е. . Уравнение решается путем итераций при задании некоторого нулевого приближения ковариационной матрицы V(0). После нахождения матрицы факторных нагрузок Q вычисляются общие факторы (гиперпараметры) по уравнению
    Y=(Q т V -1)Q -1 Q т V -1 X

    Пакет статистического анализа Statistica позволяет в диалоговом режиме вычислить матрицу факторных нагрузок, а также значения нескольких заранее заданных главных факторов, чаще всего двух – по первым двум главным компонентам исходной матрицы параметров.

    Факторный анализ в системе Statistica

    Рассмотрим последовательность выполнения факторного анализа на примере обработки результатов анкетного опроса работников предприятия . Требуется выявить основные факторы, которые определяют качество трудовой жизни.

    На первом этапе необходимо отобрать переменные для проведения факторного анализа. Используя корреляционный анализ, исследователь пытается выявить взаимосвязь исследуемых признаков, что, в свою очередь, даёт ему возможность выделить полный и безызбыточный набор признаков путём объединения сильно коррелирующих признаков.

    Если проводить факторный анализ по всем переменным, то результаты могут получиться не совсем объективными, так как некоторые переменные определяется другими данными, и не могут регулироваться сотрудниками рассматриваемой организации.

    Для того чтобы понять, какие показатели следует исключить, построим по имеющимся данным матрицу коэффициентов корреляции в Statistica: Statistics/ Basic Statistics/ Correlation Matrices/ Ok. В стартовом окне этой процедуры Product-Moment and Partial Correlations (рис. 4.3) для расчёта квадратной матрицы используется кнопка One variable list. Выбираем все переменные (select all), Ok, Summary. Получаем корреляционную матрицу.

    Если коэффициент корреляции изменяется в пределах от 0,7 до 1, то это означает сильную корреляцию показателей. В этом случае можно исключить одну переменную с сильной корреляцией. И наоборот, если коэффициент корреляции мал, можно исключить переменную из-за того, что она ничего не добавит к общей сумме. В нашем случае сильной корреляции между какими-либо переменными не наблюдается, и факторный анализ будем проводить для полного набора переменных.

    Для запуска факторного анализа необходимо вызвать модуль Statistics/ Multivariate Exploratory Techniques (многомерные исследовательские методы)/ Factor Analysis (факторный анализ). На экране появится окно модуля Factor Analysis.

    Для анализа выбираем все переменные электронной таблицы; Variables (переменные): select all, Ok. В строке Input file (тип файла входных данных) указывается Raw Data (исходные данные). В модуле возможны два типа исходных данных – Raw Data (исходные данные) и Correlation Matrix – корреляционная матрица.

    В разделе MD deletion задаётся способ обработки пропущенных значений:
    * Casewise – способ исключения пропущенных значений (по умолчанию);
    * Pairwise – парный способ исключения пропущенных значений;
    * Mean substitution – подстановка среднего вместо пропущенных значений.
    Способ Casewise состоит в том, что в электронной таблице, содержащей данные, игнорируются все строки, в которых имеется хотя бы одно пропущенное значение. Это относится ко всем переменным. В способе Pairwise игнорируются пропущенные значения не для всех переменных, а лишь для выбранной пары.

    Выберем способ обработки пропущенных значений Casewise.

    Statistica обработает пропущенные значения тем способом, который указан, вычислит корреляционную матрицу и предложит на выбор несколько методов факторного анализа.

    После нажатия кнопки Ok появляется окно Define Method of Factor Extraction (определить метод выделения факторов).

    Верхняя часть окна является информационной. Здесь сообщается, что пропущенные значения обработаны методом Casewise. Обработано 17 наблюдений и 17 наблюдений принято для дальнейших вычислений. Корреляционная матрица вычислена для 7 переменных. Нижняя часть окна содержит 3 вкладки: Quick, Advanced, Descriptives.

    Во вкладке Descriptives (описательные статистики) имеются две кнопки:
    1- просмотреть корреляции, средние и стандартные отклонения;
    2- построить множественную регрессию.

    Нажав на первую кнопку, можно посмотреть средние и стандартные отклонения, корреляции, ковариации, построить различные графики и гистограммы.

    Во вкладке Advanced, в левой части, выберем метод (Extraction method) факторного анализа: Principal components (метод главных компонент). В правой части выбираем максимальное число факторов (2). Задаётся либо максимальное число факторов (Max no of factors), либо минимальное собственное значение: 1 (eigenvalue).

    Нажимаем Ok, и Statistica быстро произвёдет вычисления. На экране появляется окно Factor Analysis Results (результаты факторного анализа). Как говорилось ранее, результаты факторного анализа выражаются набором факторных нагрузок. Поэтому далее будем работать с вкладкой Loadings.

    Верхняя часть окна – информационная:
    Number of variables (число анализируемых переменных): 7;
    Method (метод выделения факторов): Principal components (главных компонент);
    Log (10) determinant of correlation matrix (десятичный логарифм детерминанта корреляционной матрицы): –1,6248;
    Number of factors extracted (число выделенных факторов): 2;
    Eigenvalues (собственные значения): 3,39786 и 1,19130.
    В нижней части окна находятся функциональные кнопки, позволяющие всесторонне просмотреть результаты анализа, числено и графически.
    Factor rotation – вращение факторов, в данном выпадающем окне можно выбрать различные повороты осей. С помощью поворота системы координат можно получить множество решений, из которого необходимо выбрать интерпретируемое решение.

    Существуют различные методы вращения координат пространства. Пакет Statistica предлагает восемь таких методов, представленных в модуле факторного анализа. Так, например, метод варимакс соответствует преобразованию координат: вращение, максимизирующее дисперсию. В методе варимакс получают упрощённое описание столбцов факторной матрицы, сводя все значения к 1 или 0. При этом рассматривается дисперсия квадратов нагрузок фактора. Факторная матрица, получаемая с помощью метода вращения варимакс, в большей степени инвариантна по отношению к выбору различных множеств переменных.

    Вращение методом квартимакс ставит целью аналогичное упрощение только по отношению к строкам факторной матрицы. Эквимакс занимает промежуточное положение? при вращении факторов по этому методу одновременно делается попытка упростить и столбцы, и строки. Рассмотренные методы вращения относятся к ортогональным вращениям, т.е. в результате получаются некоррелированные факторы. Методы прямого облимина и промакс вращения относятся к косоугольным вращениям, в результате которых получаются коррелированные между собой факторы. Термин?normalized? в названиях методов указывает на то, что факторные нагрузки нормируются, то есть делятся на квадратный корень из соответствующей дисперсии.

    Из всех предлагаемых методов, мы сначала посмотрим результат анализа без вращения системы координат – Unrotated. Если полученный результат окажется интерпретируемым и будет нас устраивать, то на этом можно остановиться. Если нет, можно вращать оси и посмотреть другие решения.

    Щёлкаем по кнопке “Factor Loading” и смотрим факторные нагрузки численно.


    Напомним, что факторные нагрузки – это значения коэффициентов корреляции каждой из переменных с каждым из выявленных факторов.

    Значение факторной нагрузки, большее 0,7 показывает, что данный признак или переменная тесно связан с рассматриваемым фактором. Чем теснее связь данного признака с рассматриваемым фактором, тем выше значение факторной нагрузки. Положительный знак факторной нагрузки указывает на прямую (а отрицательный знак? на обратную) связь данного признака с фактором.
    Итак, из таблицы факторных нагрузок было выявлено два фактора. Первый определяет ОСБ – ощущение социального благополучия. Остальные переменные обусловлены вторым фактором.

    В строке Expl. Var (рис. 8.5) приведена дисперсия, приходящаяся на тот или иной фактор. В строке Prp. Totl приведена доля дисперсии, приходящаяся на первый и второй фактор. Следовательно, на первый фактор приходится 48,5 % всей дисперсии, а на второй фактор – 17,0 % всей дисперсии, всё остальное приходится на другие неучтенные факторы. В итоге, два выявленных фактора объясняют 65,5 % всей дисперсии.

    Здесь мы также видим две группы факторов – ОСБ и остальное множество переменных, из которых выделяется ЖСР – желание сменить работу. Видимо, имеет смысл исследовать это желание более основательно на основе сбора дополнительных данных.

    Выбор и уточнение количества факторов

    Как только получена информация о том, сколько дисперсии выделил каждый фактор, можно возвратиться к вопросу о том, сколько факторов следует оставить. По своей природе это решение произвольно. Но имеются некоторые общеупотребительные рекомендации, и на практике следование им даёт наилучшие результаты.

    Количество общих факторов (гиперпараметров) определяется путём вычисления собственных чисел (рис. 8.7) матрицы Х в модуле факторного анализа. Для этого во вкладке Explained variance (рис. 8.4) необходимо нажать кнопку Scree plot.

    Максимальное число общих факторов может быть равно количеству собственных чисел матрицы параметров. Но с увеличением числа факторов существенно возрастают трудности их физической интерпретации.

    Сначала можно отобрать только факторы, с собственными значениями, большими 1. По существу, это означает, что если фактор не выделяет дисперсию, эквивалентную, по крайней мере, дисперсии одной переменной, то он опускается. Этот критерий используется наиболее широко. В приведённом выше примере на основе этого критерия следует сохранить только 2 фактора (две главные компоненты).

    Можно найти такое место на графике, где убывание собственных значений слева направо максимально замедляется. Предполагается, что справа от этой точки находится только “факториальная осыпь”. В соответствии с этим критерием можно оставить в примере 2 или 3 фактора.
    Из рис. видно, что третий фактор незначительно увеличивает долю общей дисперсии.

    Факторный анализ параметров позволяет выявить на ранней стадии нарушение рабочего процесса (возникновение дефекта) в различных объектах, которое часто невозможно заметить путём непосредственного наблюдения за параметрами. Это объясняется тем, что нарушение корреляционных связей между параметрами возникает значительно раньше, чем изменение одного параметра. Такое искажение корреляционных связей позволяет своевременно обнаружить факторный анализ параметров. Для этого достаточно иметь массивы зарегистрированных параметров.

    Можно дать общие рекомендации по использованию факторного анализа вне зависимости от предметной области.
    * На каждый фактор должно приходиться не менее двух измеренных параметров.
    * Число измерений параметров должно быть больше числа переменных.
    * Количество факторов должно обосновываться, исходя из физической интерпретации процесса.
    * Всегда следует добиваться того, чтобы количество факторов было намного меньше числа переменных.

    Критерий Кайзера иногда сохраняет слишком много факторов, в то время как критерий каменистой осыпи иногда сохраняет слишком мало факторов. Однако оба критерия вполне хороши при нормальных условиях, когда имеется относительно небольшое число факторов и много переменных. На практике более важен вопрос о том, когда полученное решение может быть интерпретировано. Поэтому обычно исследуется несколько решений с большим или меньшим числом факторов, и затем выбирается одно наиболее осмысленное.

    Пространство исходных признаков должно быть представлено в однородных шкалах измерения, т. к. это позволяет при вычислении использовать корреляционные матрицы. В противном случае возникает проблема “весов” различных параметров, что приводит к необходимости применения при вычислении ковариационных матриц. Отсюда может появиться дополнительная проблема повторяемости результатов факторного анализа при изменении количества признаков. Следует отметить, что указанная проблема просто решается в пакете Statistica путем перехода к стандартизированной форме представления параметров. При этом все параметры становятся равнозначными по степени их связи с процессами в объекте исследования.

    Плохо обусловленные матрицы

    Если в наборе исходных данных имеются избыточные переменные и не проведено их исключение корреляционным анализом, то нельзя вычислить обратную матрицу (8.3). Например, если переменная является суммой двух других переменных, отобранных для этого анализа, то корреляционная матрица для такого набора переменных не может быть обращена, и факторный анализ принципиально не может быть выполнен. На практике это происходит, когда пытаются применить факторный анализ к множеству сильно зависимых переменных, что иногда случается, например, в обработке вопросников. Тогда можно искусственно понизить все корреляции в матрице путём добавления малой константы к диагональным элементам матрицы, и затем стандартизировать её. Эта процедура обычно приводит к матрице, которая может быть обращена, и поэтому к ней применим факторный анализ. Более того, эта процедура не влияет на набор факторов, но оценки оказываются менее точными.

    Факторное и регрессионное моделирование систем с переменными состояниями

    Системой с переменными состояниями (СПС) называется система, отклик которой зависит не только от входного воздействия, но и от обобщенного постоянного во времени параметра, определяющего состояние. Регулируемый усилитель или аттенюатор? это пример простейшей СПС, в котором коэффициент передачи может дискретно или плавно изменяться по какому-либо закону. Исследование СПС обычно проводится для линеаризованных моделей, в которых переходный процесс, связанный с изменением параметра состояния, считается завершённым.

    Аттенюаторы, выполненные на основе Г-, Т- и П-образного соединения последовательно и параллельно включённых диодов получили наибольшее распространение. Сопротивление диодов под воздействием управляющего тока может меняться в широких пределах, что позволяет изменять АЧХ и затухание в тракте. Независимость фазового сдвига при регулировании затухания в таких аттенюаторах достигается с помощью реактивных цепей, включенных в базовую структуру. Очевидно, что при разном соотношении сопротивлений параллельных и последовательных диодов может быть получен один и тот же уровень вносимого ослабления. Но изменение фазового сдвига будет различным.

    Исследуем возможность упрощения автоматизированного проектирования аттенюаторов, исключающего двойную оптимизацию корректирующих цепей и параметров управляемых элементов. В качестве исследуемой СПС будем использовать электрически управляемый аттенюатор, схема замещения которого приведена на рис. 8.8. Минимальный уровень затухания обеспечивается в случае малого сопротивления элемента Rs и большого сопротивления элемента Rp. По мере увеличения сопротивления элемента Rs и уменьшения сопротивления элемента Rp вносимое ослабление увеличивается.

    Зависимости изменения фазового сдвига от частоты и затухания для схемы без коррекции и с коррекцией приведены на рис. 8.9 и 8.10 соответственно. В корректированном аттенюаторе в диапазоне ослаблений 1,3-7,7 дБ и полосе частот 0,01?4,0 ГГц достигнуто изменение фазового сдвига не более 0,2°. В аттенюаторе без коррекции изменение фазового сдвига в той же полосе частот и диапазоне ослаблений достигает 3°. Таким образом, фазовый сдвиг уменьшен за счет коррекции почти в 15 раз.

    Будем считать параметры коррекции и управления независимыми переменными или факторами, влияющими на затухание и изменение фазового сдвига. Это даёт возможность с помощью системы Statistica провести факторный и регрессионный анализ СПС с целью установления физических закономерностей между параметрами цепи и отдельными характеристиками, а также упрощения поиска оптимальных параметров схемы.

    Исходные данные формировались следующим образом. Для параметров коррекции и сопротивлений управления, отличающихся от оптимальных в большую и меньшую стороны на сетке частот 0,01?4 ГГц, были вычислены вносимое ослабление и изменение фазового сдвига.

    Методы статистического моделирования, в частности, факторный и регрессионный анализ, которые раньше не использовались для проектирования дискретных устройств с переменными состояниями, позволяют выявить физические закономерности работы элементов системы. Это способствует созданию структуры устройства исходя из заданного критерия оптимальности. В частности, в данном разделе рассматривался фазоинвариантный аттенюатор как типичный пример системы с переменными состояниями. Выявление и интерпретация факторных нагрузок, влияющих на различные исследуемые характеристики, позволяет изменить традиционную методологию и существенно упростить поиск параметров коррекции и параметров регулирования.

    Установлено, что использование статистического подхода к проектированию подобных устройств оправдано как для оценки физики их работы, так и для обоснования принципиальных схем. Статистическое моделирование позволяет существенно сократить объём экспериментальных исследований.

    Результаты

    • Наблюдение за общими факторами и соответствующими факторными нагрузками – это необходимое выявление внутренних закономерностей процессов.
    • С целью определения критических значений контролируемых расстояний между факторными нагрузками следует накапливать и обобщать результаты факторного анализа для однотипных процессов.
    • Применение факторного анализа не ограничено физическими особенностями процессов. Факторный анализ является как мощным методом мониторинга процессов, так и применим к проектированию систем самого различного назначения.

    Факторный анализ со статистической точки зрения связан с поиском новых признаков, характеризующих объекты наблюдения на основе имеющейся информации, которая содержится в измеренных значениях k исходных признаков. Всю информацию об п объектах наблюдения можно представить в виде матрицыили прямоугольной таблицы “объект – признак” (табл. 5.6).

    Таблица 5.6

    Таблица “объект (i) – признак (/)”

    Для дальнейшего анализа удобнее использовать матрицу наблюдаемых стандартизованных признаков, которые тоже относятся к категории измеримых, как рассчитанных непосредственно по результатам произведенных наблюдений

    Стандартизация производится в соответствии с заменой (5.3), но обычно неизвестные математические ожидания и дисперсии n”j заменяются их выборочными аналогами: выборочной средней

    и несмещенной оценкой дисперсии

    либо асимптотически несмещенной оценкой дисперсии

    Средние значения стандартизованных переменных равны нулю (), а дисперсии – единице ().

    Связь новых переменных с наблюдаемыми признаками в факторном анализе аналогична регрессионной, но с тем существенным отличием, что эти новые объясняющие переменные, или факторы, неизвестны и нуждаются в идентификации. В моделях факторного анализа используются общие и индивидуальные факторы. Общие факторы связаны значимыми коэффициентами более чем с одной измеримой переменной. Каждый из индивидуальных факторов v. связан только с однойу-й измеримой переменной. При этом обычно предполагается, что индивидуальные факторы некоррелированы между собой и с общими факторами. Кроме того, для удобства факторы выбираются как стандартизованные:

    Второй индекс переменныхобозначает номер объекта наблюдения i – 1,2,…, п. Первый индекс j = 1,2,…,k характеризует номер исходного признака Zjj и соответствующего ему индивидуального эффекта vjY, а для g lt первый индекс / = 1,2,…, от обозначает номер общего фактора.

    Коэффициенты при общих факторах можно свести в матрицу

    а коэффициенты при индивидуальных факторах для дальнейшего матричного представления модели будут диагональными элементами в диагональной матрице

    Включающая нагрузки всех факторов общая матрица коэффициентов, или матрица факторного отображения, будет представлять собой результат объединения элементов обеих матриц:

    image2392

    Матрица значений общих факторов представляет собой матрицу размерности т х п, где т < k:

    Матрица значений индивидуальных факторов имеет размерность kxn:

    Общая матрица значений факторов может быть образована как результат объединения матриц общих и индивидуальных факторов:

    С учетом введенных обозначений модель факторного анализа в матричной форме может быть представлена в виде

    Модель факторного анализа с учетом неполного содержания исходной информации об объектах исследования в новой системе координат меньшей размерности (m < k) неизбежно будет содержать помимо общности в виде информации об объектах в системе координат общих факторов и специфичность, представляемую в виде значений характерных факторов. В то же время с учетом случайности выборки и погрешности измерения нормированное наблюдаемое значение содержит истинное значение, индивидуальную особенность Indjj каждого объекта и ошибку измерения е”:

    В рамках статистического подхода под истинным значением понимается математическое ожидание признака, вторая и третья составляющие характеризуют отклонение отдельного показателя на данном объекте от среднего. Если первая составляющая является общей статистической характеристикой совокупности объектов исследования, то вторая и третья компоненты являются носителями особенностей, присущих данному объекту и методу измерения. В процессе управления важнейшим моментом являются знание и умение учитывать индивидуальные черты отдельных объектов исследования.

    Характеристика вариативности – дисперсия – для нормированного значения наблюдаемого признака может быть представлена в следующем виде:

    image2399 (5.14)

    Ошибка измерения обычно оказывается значительно меньше вариативной компоненты, поэтому их часто объединяют . Однако поскольку вариативная составляющая и ошибки измерения возникают независимо друг от друга, то их рассматривают как некоррелированные.

    Рассмотрим слагаемые, содержащие сомножитель, величина которого является дисперсией произвольного общего факторапосле нормировки:

    Величина дисперсии нормированного общего фактора равна единице:

    Рассмотрим в формуле (5.14) слагаемые, содержащие сомножитель . Это коэффициент корреляции между двумя общими факторами, т.е.

    После введения обозначения для коэффициента корреляции общих и индивидуальных эффектов

    выражение (5.14) можно представить в виде

    Из этого представления следует, что

    Так как характерный фактор присущ только данной)-й переменной и некоррелирован с общими факторами, тои выражение (5.15) можно упростить:

    image2412

    Дальнейшее упрощение может быть получено для некоррелированных общих факторов, когда и, тогда

    В этом случае дисперсия признакаравна сумме относительных вкладов в дисперсию этого признака каждого из т общих и одного характерного фактора.

    Компонент общей дисперсииназывается общностью показателя Zj, т.е. суммой относительных вкладов всех т общих факторов в дисперсию признака Zj. Вклад в дисперсию признака z ) характерного фактора Vj, или характерность, определяется слагаемым bj. В свою очередь дисперсия характерного фактора состоит из двух составляющих: связанной со спецификой параметра Sj и связанной с ошибками измерений Е у

    Если факторы специфичности Sj и ошибки Ej некоррелированы между собой, то модель факторного анализа примет вид

    Вклад характерного фактора в дисперсию признака может быть представлен следующим образом:

    Если выделить из дисперсии признака составляющую ошибки, то получим характеристику, называемую надежностью:

    Вклад фактора /,. в суммарную дисперсию всех признаков определяется соответствующей суммой квадратов коэффициентов при нормированных значениях:

    Вклад всех общих факторов в суммарную дисперсию признаков рассчитывается как сумма вкладов всех факторов:

    Отношение этой суммы к размерности исходного признакового пространства

    называют полнотой факторизации.

    Исходные данные матрицы X (или Z) позволяют получить матрицу парных коэффициентов корреляции R. Для воспроизведения всех связей переменных в корреляционной матрице может быть использована матрица К = (А В):

    image2423

    Введем обозначение для первого слагаемого – редуцированной корреляционной матрицы: /¾ = ЛЛ Т.

    Матрицу ВВ” вследствие того, что В является диагональной матрицей, можно представить в виде ВВ Т = В 2.

    Таким образом, матрица парных коэффициентов корреляции исходных показателей может быть представлена в виде суммы:

    В то время как R является корреляционной матрицей с единицами на главной диагонали, матрица R h представляет собой корреляционную матрицу с общностями на главной диагонали.

    Для стандартизованных исходных признаков 7 корреляционная матрица R тождественна ковариационной матрице 2. Если рассматривать данные как выборку из генеральной совокупности, то определенная по выборочным данным матрица 2 (или К) является оценкой истинной ковариационной (корреляционной) матрицы. Несмещенная оценка может быть получена в виде

    Рассчитаем редуцированную корреляционную матрицу с учетом равенства (5.4), используя для восстановления нормированных исходных признаков только общие факторы:

    Выражение, стоящее между А и А т, является корреляционной матрицей стохастических связей между общими факторами

    При этом общее выражение для редуцированной корреляционной матрицы примет вид

    Если общие факторы некоррелированы между собой, то матрица С будет единичной, и при этом

    Два последних выражения представляют собой фундаментальную теорему факторного анализа.

    Пример 5.2

    По данным о численности (дг,) и фонде заработной платы (,v2) пяти строительных организаций проведем факторный анализ методом главных компонент. Дано:

    Решение

    Рассчитаем выборочные характеристики переменных т, и Выборочный коэффициент корреляции равен

    image2432

    Преобразуем матрицу X в матрицу нормированных значений Z с элементами , где

    Матрица парных коэффициентов корреляции имеет вид

    Для определения собственных значений матрицы R рассмотрим характеристическое уравнение

    Отсюда следует, что

    Так как по условию компонентного анализа, то, где,

    – соответственно дисперсии и вклад первой и второй главных компонент в суммарную дисперсию, равную

    Относительный вклад компонент в суммарную дисперсию равен Таким образом,

    Определим матрицу собственных векторов из уравнения Собственный векторнаходим из условия

    Подставляя полученные значения, получим

    откудаили

    Нормированный собственный вектор, соответствующий, равен

    Собственный вектор V 2 найдем, решив уравнение

    откуда.или

    Нормированный собственный вектор, соответствующий Х2. равен

    тогда нормированная матрица собственных векторов имеет вид

    image2459

    Матрицу факторных нагрузок найдем по формуле image2460. Подставив полученные значения, получим

    Матрицу факторных нагрузок используют для интерпретации главных компонент, так как элементы матрицы а }Х) = характеризуют тесноту связи между Хгм признаком и /0-й главной компонентой. В нашем примере первая главная компонента тесно связана с показателями.г, и.г2, а /, характеризует размер предприятия.

    Матрицу значений главных компонент F можно получить по формуле

    Предварительно найдем обратную матрицу. Так как то

    Тогда image2466

    Как уже отмечалось, матрица F. которую мы получили, характеризует пять строительных организаций в пространстве главных компонент. Ее можно использовать в задачах классификации и регрессионного анализа. Например, классификация организации но первой главной компоненте /, характеризующей размер предприятий, позволяет ранжировать их в порядке возрастания следующим образом: 4; 1:2: 5: 3. Значения главных компонент определены с точностью до знака, поэтому они могли бы оказаться противоположными для всех объектов, и проведенная ранжировка характеризовала бы размеры предприятий в порядке уменьшения. Определить правильность выбранного знака можно по значениям исходных показателей для крайних проранжированных объектов.

    Пример 5.3

    На основе информации о значениях семи исходных признаков получены два общих некоррелированных фактора. По известной матрице весовых коэффициентов двух общих факторов Л требуется воспроизвести редуцированную корреляционную матрицу R h, определить редуцированную корреляционную матрицу для случая использования только первого общего фактора R 1 и только второго общего фактора R” при условии, что дисперсия первого общего фактора больше, чем дисперсия второго.

    Решение

    1. Получим матрицу R h.

    Произведем умножение матрицы А на А т и получим редуцированную корреляционную матрицу /?л. т.е. восстановленную из модели факторного анализа при условии, что факторы некоррелированы:

    image2467

    В матрице R /t на главной диагонали стоят дисперсии, представляющие общности, суммарный вклад в переменные имеющихся двух общих факторов.

    2. Получим матрицу R 1.

    Зададимся вопросом: что было бы, если бы мы пренебрегли вторым общим фактором и провели интерпретацию на основании только первого общего фактора? Какая редуцированная корреляционная матрица R 1 была бы воспроизведена?

    image2468

    Воспроизведенная, или редуцированная, по первому общему фактору матрица восстанавливает связи, объясняемые первым собственным вектором матрицы А. В матрице Д”на главной диагонали стоят вклады в дисперсию первого столбца фактора соответствующих переменных. Они совпадают с вкладами признаков в дисперсию первого фактора aj t.

    Как первая, так и вторая воспроизведенные матрицы не отражают всей информации процесса. При этом вторая матрица R” отражает меньше информации, чем первая R 1. Это объясняется тем, что R 1 воспроизводит связи, соответствующие дисперсии первого фактора, которая больше дисперсии второго фактора. Однако и более полная матрица R/, не производит связей, определяемых характерными факторами, так как она объединяет весовые коэффициенты только общих факторов. Необъясненная же часть информации матрицами R/, и А приходится на характерные факторы.

    При использовании факторного анализа исследователь сталкивается с различными проблемами. Наиболее часто они возникают в процессе содержательной интерпретации результатов анализа. Многие из проблем носят частный характер, не относящийся непосредственно к факторному анализу и присущий определенному классу задач, например наличие плохо обусловленных матриц парных коэффициентов корреляций, присущее классу экономико-статистических задач.

    Среди проблем проведения факторного анализа можно выделить проблемы робастности, общности, выбора факторов, вращения факторов и оценки их значений и содержательной интерпретации, а также проблему построения динамических моделей.

    В классическом факторном анализе на основе исходной таблицы “объект – признак” (см. табл. 5.6) формируется матрица нормированных значений исходных признаков. Опыт решения практических задач показывает, что наличие грубых ошибок данных при многомерном анализе может привести к дальнейшим трудностям. Малую чувствительность к наличию грубых ошибок данных обеспечивают робастные оценки параметров: среднего значения и дисперсии или среднего квадратического отклонения.

    Рассчитываемая матрица парных коэффициентов корреляции является симметрической матрицей порядка к. Она является диагональной, и на се главной диагонали стоят единицы, соответствующие дисперсиям исходных нормированных показателей. Данная матрица R является исходной для проведения компонентного анализа. Для факторного анализа необходимо получить редуцированную матрицу /?/,.

    Редуцированная корреляционная матрица /¾ служит основной для факторного анализа. Она также является симметрической порядка k, но на ее главной диагонали вместо единиц стоят общности hj. На основе этой матрицы рассчитывается матрица весовых коэффициентов Л. Ее элементы являются характеристиками стохастической связи между исходными признаками и общими факторами.

    При переходе от редуцированной корреляционной матрицы к матрице весовых коэффициентов необходимо решить проблему нахождения факторов, включающую вопросы определения числа извлекаемых общих факторов и их вида. Значения весовых коэффициентов являются координатами признаков на новых осях координат. Этими координатными осями являются общие факторы. Чаще всего для их нахождения используется метод главных компонент.

    Задача воспроизведения матрицы /?>, по матрице А не имеет однозначного решения. Выбор одной из возможных матриц является составной частью решения задачи вращения координатных осей.

    После получения новой интегральной системы измерения – общих факторов – можно оценить значения индивидуальных факторов для каждого объекта исследования.

    Сопоставление факторных решений в течение длительного периода обеспечивается динамическим моделированием, позволяющим выявить те признаки, влияние которых в будущем будет снижаться или, наоборот, возрастать.

    Министерство сельского хозяйства РФ

    Федеральное государственное образовательное учреждение

    Высшего профессионального образования

    Государственный университет по землеустройству

    Кафедра экономической теории и менеджмента

    Курсовая работа

    По дисциплине «Анализ и диагностика финансовой деятельности предприятия»

    На тему: «Факторный анализ элементов производства».

    Выполнила:

    студентка 34-э группы

    Максимова Н.С.

    Проверила:

    Чиркова Л.Л.

    Москва 2009 г.

    Введение………………………………………………………………………………..3

    Глава 1. Факторный анализ элементов производства…………………………………………………………………………..4

    1.1. Факторный анализ, его виды и задачи…………………………………………………………………………………..4

    1.2 . Детерминированный факторный анализ. Требования к моделированию …………………………………………………………………………..8

    1.3 Методы и виды детерминированного факторного анализа…………………..10

    Глава 2 . Практическая часть………………………………………………………..14

    2.1. Способы измерения влияния факторов в анализе хозяйственной деятельности………………………………………………………………………….14

    2.2. Факторный анализ финансового состояния автотранспортного предприятия ОАО “Предприятие 1564”……………………………………………….….20

    Заключение…………………………………………………………………….……..24

    Список используемой литературы……………………………………………………25

    Приложения…………………………………………………………………………..26

    Введение

    Факторный анализ – совокупность методов многомерного статистического анализа, применяемых для изучения взаимосвязей между значениями переменных. С помощью факторного анализа возможно выявление скрытых (латентных) переменных факторов, отвечающих за наличие линейных статистических связей (корреляций) между наблюдаемыми переменными.

    Цели факторного анализа:

    • сокращение числа переменных;
    • определение взаимосвязей между переменными, их классификация.

    Факторный анализ возник в начале XX века, первоначально разрабатывался в задачах психологии. Большой вклад в развитие факторного анализа внесли Чарльз Спирмэн, Рэймонд Кеттел.

    Методы факторного анализа:

    • метод главных компонент
    • корреляционный анализ
    • метод максимального правдоподобия

    Факторный анализ – определение влияния факторов на результат – является одним из сильнейших методических решений в анализе хозяйственной деятельности компаний для принятия решений. Для руководителей – дополнительный аргумент, дополнительный “угол зрения”.

    Однако на практике он применяется редко в силу нескольких причин:

    1) реализация этого метода требует некоторых усилий и специфического инструмента (программного продукта);

    2) у компаний есть другие «вечные» первоочередные задачи.

    Глава 1. Факторный анализ элементов производства

    1.1 Факторный анализ, его виды и задачи.

    Под факторным анализом понимается методика комплексного и системного изучения и измерения воздействия факторов на величину результативных показателей.

    В общем случае можно выделить следующие основные этапы факторного анализа:

    1. Постановка цели анализа.

    2. Отбор факторов, определяющих исследуемые результативные показатели.

    3. Классификация и систематизация факторов с целью обеспечения комплексного и системного подхода к исследованию их влияния на результаты хозяйственной деятельности.

    4. Определение формы зависимости между факторами и результативным показателем.

    5. Моделирование взаимосвязей между результативным и факторными показателями.

    6. Расчет влияния факторов и оценка роли каждого из них в изменении величины результативного показателя.

    7. Работа с факторной моделью (практическое ее использование для управления экономическими процессами).

    Отбор факторов для анализа того или иного показателя осуществляется на основе теоретических и практических знаний в конкретной отрасли. При этом обычно исходят из принципа: чем больший комплекс факторов исследуется, тем точнее будут результаты анализа. Вместе с тем необходимо иметь в виду, что если этот комплекс факторов рассматривается как механическая сумма, без учета их взаимодействия, без выделения главных, определяющих, то выводы могут быть ошибочными. В анализе хозяйственной деятельности (АХД) взаимосвязанное исследование влияния факторов на величину результативных показателей достигается с помощью их систематизации, что является одним из основных методологических вопросов этой науки.

    Важным методологическим вопросом в факторном анализе является определение формы зависимости между факторами и результативными показателями: функциональная она или стохастическая, прямая или обратная, прямолинейная или криволинейная. Здесь используется теоретический и практический опыт, а также способы сравнения параллельных и динамичных рядов, аналитических группировок исходной информации, графический и др.

    Моделирование экономических показателей также представляет собой сложную проблему в факторном анализе, решение которой требует специальных знаний и навыков.

    Расчет влияния факторов – главный методологический аспект в АХД. Для определения влияния факторов на конечные показатели используется множество способов, которые будут подробнее рассмотрены ниже.

    Последний этап факторного анализа – практическое использование факторной модели для подсчета резервов прироста результативного показателя, для планирования и прогнозирования его величины при изменении ситуации.

    В зависимости от типа факторной модели различают два основных вида факторного анализа – детерминированный и стохастический.

    Детерминированный факторный анализ представляет собой методику исследования влияния факторов, связь которых с результативным показателем носит функциональный характер, т. е. когда результативный показатель факторной модели представлен в виде произведения, частного или алгебраической суммы факторов.

    Данный вид факторного анализа наиболее распространен, поскольку, будучи достаточно простым в применении (по сравнению со стохастическим анализом), позволяет осознать логику действия основных факторов развития предприятия, количественно оценить их влияние, понять, какие факторы и в какой пропорции возможно и целесообразно изменить для повышения эффективности производства. Подробно детерминированный факторный анализ мы рассмотрим в отдельной главе.

    Стохастический анализ представляет собой методику исследования факторов, связь которых с результативным показателем в отличие от функциональной является неполной, вероятностной (корреляционной). Если при функциональной (полной) зависимости с изменением аргумента всегда происходит соответствующее изменение функции, то при корреляционной связи изменение аргумента может дать несколько значений прироста функции в зависимости от сочетания других факторов, определяющих данный показатель. Например, производительность труда при одном и том же уровне фондовооруженности может быть неодинаковой на разных предприятиях. Это зависит от оптимальности сочетания других факторов, воздействующих на этот показатель.

    Стохастическое моделирование является в определенной степени дополнением и углублением детерминированного факторного анализа. В факторном анализе эти модели используются по трем основным причинам:

      необходимо изучить влияние факторов, по которым нельзя построить жестко детерминированную факторную модель (например, уровень финансового левериджа);
    • необходимо изучить влияние сложных факторов, которые не поддаются объединению в одной и той же жестко детерминированной модели;
    • необходимо изучить влияние сложных факторов, которые не могут быть выражены одним количественным показателем (например, уровень научно-технического прогресса).

    В отличие от жестко детерминированного стохастический подход для реализации требует ряда предпосылок:

    а) наличие совокупности;

    б) достаточный объем наблюдений;

    в) случайность и независимость наблюдений;

    г) однородность;

    д) наличие распределения признаков, близкого к нормальному;

    е) наличие специального математического аппарата.

    Построение стохастической модели проводится в несколько этапов:

    • качественный анализ (постановка цели анализа, определение совокупности, определение результативных и факторных признаков, выбор периода, за который проводится анализ, выбор метода анализа);
    • предварительный анализ моделируемой совокупности (проверка однородности совокупности, исключение аномальных наблюдений, уточнение необходимого объема выборки, установление законов распределения изучаемых показателей);
    • построение стохастической (регрессионной) модели (уточнение перечня факторов, расчет оценок параметров уравнения регрессии, перебор конкурирующих вариантов моделей);
    • оценка адекватности модели (проверка статистической существенности уравнения в целом и его отдельных параметров, проверка соответствия формальных свойств оценок задачам исследования);
    • экономическая интерпретация и практическое использование модели (определение пространственно-временной устойчивости построенной зависимости, оценка практических свойств модели).

    Кроме деления на детерминированный и стохастический, различают следующие типы факторного анализа:

    • прямой и обратный;
    • одноступенчатый и многоступенчатый;
    • статический и динамичный;
    • ретроспективный и перспективный (прогнозный).

    При прямом факторном анализе исследование ведется дедуктивным способом – от общего к частному. Обратный факторный анализ осуществляет исследование причинно-следственных связей способом логичной индукции – от частных, отдельных факторов к обобщающим.

    Факторный анализ может быть одноступенчатым и многоступенчатым. Первый тип используется для исследования факторов только одного уровня (одной ступени) подчинения без их детализации на составные части. Например, . При многоступенчатом факторном анализе проводится детализация факторов a и b на составные элементы с целью изучения их поведения. Детализация факторов может быть продолжена и дальше. В этом случае изучается влияние факторов различных уровней соподчиненности.

    Необходимо также различать статический и динамический факторный анализ. Первый вид применяется при изучении влияния факторов на результативные показатели на соответствующую дату. Другой вид представляет собой методику исследования причинно-следственных связей в динамике.

    И, наконец, факторный анализ может быть ретроспективным, который изучает причины прироста результативных показателей за прошлые периоды, и перспективным, который исследует поведение факторов и результативных показателей в перспективе.

    1.2 Детерминированный факторный анализ. Требования к моделированию.

    Детерминизм (от лат. determino – определяю) – учение об объективной закономерной и причинной обусловленности всех явлений. В основе детерминирования лежит положение о существовании причинности, т. е. о такой связи явлений, при которой одно явление (причина) при вполне определенных условиях порождает другое (следствие). }

Профессиональные мужские инструменты
Добавить комментарий