Холодная прокатка листов. Основные различия горячекатаного и холоднокатаного проката, особенности применения

Прокаткой называют процесс пластического формоизменения материала, последовательно увлекаемого в очаг деформации силами трения, действующими на контактной поверхности «деформируемая заготовка – движущийся инструмент».

При прокатке одновременно подвергается пластической деформации не весь объем материала, а лишь его часть, находящаяся в очаге деформации. Это позволяет обрабатывать большие массы материала при оптимальных энергозатратах и размерах оборудования, производить обработку с огромными скоростями, обеспечивать высокую точность получаемых изделий при минимальном износе инструмента.

Прокатка является одним из наиболее прогрессивных способов получения готовых металлоизделий и занимает ведущее положение среди существующих способов обработки металлов давлением.

Различают три основных способа прокатки, отличающиеся направлением обработки или характером выполнения деформации: продольная, поперечная и поперечно-продольная (винтовая). Каждый из этих способов можно производить при нагреве обрабатываемых заготовок (горячая) и без нагрева (холодная прокатка).

Продольная прокатка основана на деформации металла валками, расположенными параллельно в одной плоскости и вращающимися в разные стороны; ось прокатки металла перпендикулярна большим осям валков (рис. 3.1а).

Поперечная прокатка – это деформация металла двумя валками, вращающимися в одну сторону; ось прокатки параллельна большим осям валков (рис. 3.1б).

Рис. 3.1 а) схема продольной прокатки; б) схема поперечной прокатки.

Косая прокатка представляет собой деформацию металла двумя валками, расположенными под определенным углом друг к другу и вращающимися в одну сторону. При этом металл задается в валки вдоль их больших осей (рис. 3.2). Такое расположение валков придает металлу вращательное и поступательное движение.

Рис. 3.2 Схема косой прокатки

Последние два способа прокатки предназначены для изготовления изделий в виде тел вращения (трубы, шары и т. д.).

Технологический процесс прокатки предварительно зачищенной и нагретой стали включает в себя следующие операции:

1) резка проката на мерные длины;

2) охлаждение;

3) термообработка;

4) правка;

5) отделка;

6) контроль качества.

К технологическим параметрам прокатки относят: температуру деформируемой заготовки, частное (за один проход между валками) и общее обжатие заготовки, скорость прокатки (скорость выхода заготовки из валков может достигать до 100 м/с), диаметр валков и коэффициент контактного трения между инструментом и деформируемой заготовкой. Для характеристики деформации при прокатке используют абсолютные и относительные показатели:

Абсолютное обжатие;

Относительное обжатие;

Коэффициент вытяжки, где:

h0 – высота заготовки до деформации;

h1 – высота заготовки после деформации;

L0 – длина заготовки до деформации;

L1 – длина заготовки после деформации.

Абсолютное и относительное обжатие заготовки за один проход ограничено условием захвата металла прокатными валками, а также их прочностью. Поэтому в зависимости от условий прокатки относительное обжатие за проход обычно не превышает 0,35 – 0,45. Кроме того, определенные ограничения накладывают физико-механические свойства деформируемого материала, особенно при холодной прокатке.

Основным деформирующим инструментом для прокатки металлоизделий обычно являются прокатные валки, в редких случаях используется и плоский клиновой инструмент. При изготовлении труб используют оправки (короткие, длинные, плавающие), назначение которых – оформлять внутреннюю поверхность полых изделий.

Валок состоит из рабочей части, или бочки, двух опор, или шеек, и хвостовика для передачи крутящего момента вращающемуся валку. Валки бывают цельные и составные, ручьевые и безручьевые (с гладкой цилиндрической или конической поверхностью, например, для прокатки листов или сортового профиля). Прокатные валки являются деформирующим инструментом, воспринимающим высокие удельные и суммарные давления и работающим в тяжелых условиях (температура, трение скольжения). Валки изготавливают из чугуна, стали и твердых сплавов. Обычно рабочая поверхность валков должна иметь высокую твердость, особенно при холодной прокатке, которая характеризуется большими удельными нагрузками. Диаметр рабочей поверхности валка в зависимости от назначения прокатного оборудования может лежать в широких пределах – от 1 мм до 1800 мм.

Малые диаметры применяют при холодной прокатке высокопрочных сплавов. В этом случае для обеспечения их нормальной эксплуатации применяют так называемые опорные валки, которые устанавливаются в специальных многовалковых клетях.

Прокатку осуществляют на специальном оборудовании, которое принято называть прокатным станом. Он включает комплекс технологических машин и устройств. Основное оборудование прокатного стана предназначено для выполнения главной операции в технологическом процессе – прокатки, т.е. для осуществления вращения валков и непосредственной пластической деформации заготовки для придания ей необходимой формы, размеров и свойств. Это оборудование принято называть главной линией прокатного стана. Различают станы: одновалковые, двухвалковые, многовалковые, линейные, непрерывные, полунепрерывные, заготовочные, листовые, сортовые, балочные, специальные и т.д.

Помимо пластической деформации, на прокатном стане выполняют другие разнообразные операции, включающие в себя как рассмотренную выше подготовку к прокатке, так и транспортировку, отделку и контроль качества готовой продукции.

Транспортные устройства перемещают заготовки вдоль и поперек стана, поднимают и опускают, поворачивают вокруг горизонтальной и вертикальной оси. К ним относят: рольганги, манипуляторы, кантователи и поворотные механизмы, подъемно-качающие столы, опрокидыватели, слитковозы и т.д. Оборудование для отделки и контроля проката включает: устройства для резки металла, машины для правки проката, устройства для термообработки проката, агрегаты для металлических и полимерных покрытий, устройства и приборы для контроля качества проката, машины для увязки и пакетирования проката.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное образовательное учреждение

высшего профессионального образования

«череповецкий государственный университет»

Институт Информационных Технологий

Кафедра автоматизации и систем управления

О Т Ч Е Т

по производственной практике

Череповец, 2013 год

Введение

Производственная практика является важной составной частью подготовки высококвалифицированных специалистов, направлена на закрепление теоретических знаний, полученных студентами в процессе обучения, формирования у них умений и навыков практической инженерной деятельности. Производственная практика организуется выпускающей кафедрой и отделом практики университета. Практика проводится на базовых предприятиях г. Череповца.

Я проходил практику на ООО «Северсталь Промсервис», которая в свою очередь распределила меня на производство холодного проката (ПХП) в цех прокатки и отжига (ЦПиО).

1. Технологический процесс производства холоднокатаного листа

Необходимость холодной прокатки металла обусловлена в первую очередь тем, что при горячей прокатке невозможно получить лист хорошего качества толщиной менее одного миллиметра. Этому препятствует образующаяся при горячей прокатке окалина, толщина которой соизмерима с толщиной самого прокатываемого металла. Лишь при холодной прокатке удаётся получить тонкий лист блестящей поверхности, равномерный по толщине, с механическими свойствами, необходимыми при дальнейшей его обработке.

Технический процесс производства холоднокатаного листа включает обычно следующие операции:

Очистку поверхности полосы, поступающей на стан холодной прокатки от окалины и ржавчины;

Холодную прокатку металла;

Термическую обработку холоднокатаного металла для придания ему заданных свойств;

Дополнительную холодную прокатку после отжига с небольшим обжатием (дрессировка);

Окончательную отделку.

Очистка полосы от окалины и ржавчины производится травлением в кислотных ваннах. Такая очистка нужна для того, чтобы окалина не вдавливалась в полосу и не портила валки станов холодной прокатки. Основным способом очистки поверхности металла от окалины является травление в различных кислотах и щелочах. В цехе травления металла ОАО «Северсталь» удаление окалины производится с помощью серной кислоты. Данный цех состоит из трех непрерывных травильных агрегатов. Механическое удаление окалины производят в окалиноломателе и в специальных установках, называемых станками абразивной зачистки. Зачистку ведут выборочно, удаляя местные дефекты. При подготовке металла к холодной прокатке механические способы удаления окалины обычно применяют как предварительные для улучшения процесса травления.

После отчистки полосы от окалины и её промасливания в цехе травления, металл поступает на склад травленых рулонов в цехе прокатки и отжига (ЦПиО). Здесь производится холодная прокатка полосы металла, отчистка полосы от масла и её термическая и механическая обработка.

Технологическое оборудование цеха прокатки и отжига состоит из: двух станов холодной прокатки – непрерывного четырехклетевого стана 1700 и непрерывного пятиклетевого стана бесконечной прокатки 1700; дрессировочных станов 1 и 2; четырех блоков колпаковых печей, два из которых работают под водородной защитной атмосферой и два блока под азотной защитной атмосферой.

Четырехклетевой стан, допускающий за один проход суммарное обжатие полосы 70-80%, предназначен для прокатки углеродистой, главным образом автолистовой стали до конечной толщины 0,5-0,3 мм.

Пятиклетевой стан позволяет получить за один проход суммарное обжатие 90%, его применяют для производства листовой стали толщиной до 0,18 мм.

Для современных станов холодной прокатки характерен рулонный способ производства, обеспечивающий высокие производительность и качество готового листа. Особое внимание при холодной прокатке уделяют качеству смазки с точки зрения уменьшение коэффициента трения, охлаждения валков, а также возможности надежного удаления ее с поверхности листа перед термической обработкой.

Холодная прокатка позволяет обеспечивать хорошие технологические качества листов по штампуемости и другим пластическим и прочностным характеристикам и получать заданные электротехнические свойства, что позволило обеспечить выход холоднокатаного проката на мировой рынок.

Завершающая термическая обработка обязательна для всех видов холодного проката. Помимо снятия наклепа, она служит для получения однородной, мелкозернистой структуры и обеспечивает глубокую вытяжку для штампуемых сталей. Рекристаллизационный светлый отжиг холоднокатаных полос в рулонах осуществляется в одностопных колпаковых печах с газовым отоплением. Два блока водородных колпаковых печей в Цехе прокатки и отжига поставлены и смонтированы западногерманской фирмой «LOI Essen». Эти печи используются для высококачественного отжига специальных марок сталей, а также продукции, идущей на экспорт. Два блока отечественных колпаковых печей, использующих в качестве защитной атмосферы азот, поставлены фирмой «Стальпроект» (Москва). Они предназначены для отжига стали обыкновенного качества.

Большое значение для качества холоднокатаного металла имеет состав защитного газа. В качестве защитной атмосферы в колпаковых печах применяют водород и азот, полученные на участок подготовки защитных газов.

После термической обработки металла производят его дрессировку на двух дрессировочных станах 1 и 2.

Дрессировочные станы 1700 предназначены для дрессировки холоднокатаных отожженных полос из низкоуглеродистой качественной, углеродистой низколегированной и электротехнической изотропной стали с содержанием кремния до 1,8% и пределом прочности до 65 кгс/мм2, свернутых в рулоны, на сухих валках или с применением эмульсии.

Дрессировкой называют прокатку с малыми обжатиями до 8% легированного и горячекатаного металла. В этом случае дрессировку проводят для получения полос с требуемой планшетностью и необходимым качеством поверхности. Таким образом, в зависимости от назначения дрессированного металла и марки стали, к нему предъявляются различные требования, характеризующие штампуемость, механические свойства, планшетность и качество поверхности. Эти требования оговорены соответствующими ГОСТами и техническими условиями.

После обработки в колпаковых печах и на дрессировочных станах, металл в рулонах обвязывают бумагой и мягким стальным листом и отгружают потребителю.

Для поддержания основного технологического процесса производства холоднокатаного листа в состав ЦПиО входят:

Масло-эмульсионное отделение (МЭО), где готовится охлаждающая эмульсия для прокатных станов,

Ремонтно-механический цех для изготовления необходимых узлов и деталей;

Участок подготовки производства (УПП), где готовятся в работу опорные и рабочие валки с необходимой рабочей поверхностью бочки.

Подавляющая часть холоднокатаного листа получается при рулонном способе производства, основным преимуществом которого является возможность осуществления непрерывности потока металла в цехе.

2 . Технологический процесс холодной прокатки металла на непреры в ном пятиклетьевом стане 1700

Непрерывный пятиклетьевой стан 1700 предназначен для бесконечной холодной прокатки горячекатаных травленых полос из углеродистых и электротехнических сталей, прошедших отчистку поверхности от окалины.

Пятиклетьевой стан позволяет получить за один проход суммарное обжатие 90%, его применяют для производства листовой стали толщиной до 0,18 мм.

Оборудование стана по своему назначению можно разделить на следующие основные части:

1. Головная часть, в которую входят механизмы подачи, подготовки и размотки рулонов, правки, сварки и транспортирования полосы с натяжением.

2. Петлевое устройство (петлеаккумулатор), включающее механизмы создания натяжения, поддержания и центрирования полосы для обеспечения непрерывной работы стана во время остановок головной части для сварки полос.

3. Входная часть, обеспечивающая подачу полосы из петлевого устройства в первую клеть и включающая в себя механизмы создания натяжения и центрирования полосы.

4. Прокатный стан, состоящий из пятиклетьевой группы с вспомогательными механизмами.

5. Выходная часть, включающая механизмы натяжения, разрезания и смотки полосы, снятия и уборки готовых рулонов.

Технологическая схема 5-ти клетьевого стана холодной прокатки 1700

На схеме приняты следующие сокращения:

Разм.1,2- разматыватель 1,2;

ПТМ – правильно-тянущая машина;

УЛН – установка ножниц листовых;

УТ1 – уборочная тележка;

НВК – ножницы для выравнивания концов полосы;

ССМ – стыкосварочная машина;

УУ1,2 – натяжное устройство 1,2;

ЦУ1,2,3,4,5 – центрирующее устройство 1,2,3,4,5;

УП – улавливатель полосы;

ПД1,2 – подающие ролики 1,2;

ЛН – летучие ножницы;

МТ – магнитный транспортер.

Горячекатаные травленые рулоны электромостовым краном поочерёдно устанавливают на стеллаж шагового конвейера №1 или №2. Вручную удаляют обвязочную ленту, после чего даётся разрешение на дальнейшее включение механизмов в работу.

На последней позиции шаговый конвейер центрирует рулон по оси стана и передаёт рулон на приёмный стол №1 или №2.

Приёмным столом и устройством центрирования №1 или №2 производится автоматическое центрирование оси рулона с осью барабана разматывателя.

Центрирование рулона контролируется визуально оператором и при необходимости корректируется им при помощи ручного управления.

Сцентрированный рулон приёмным столом №1 (№2) одевается на сложенный барабан разматывателя №1 (№2), затем закрывается откидная опора, разматыватель надвигается на опору механизмов перемещения, на рулон опускается прижимной ролик. Приёмный стол опускается в нижнее положение и, барабан разматывателя расклинивается. Установка рулона по оси стана производится при помощи передвижного упора.

В положение, удобное для отгибки полосы, рулон устанавливается автоматически.

Затем включается привод вращения барабана разматывателя в сторону размотки полосы. Происходит отгибание и подача переднего конца полосы в правильно-тянущую машину (ПТМ), где происходит правка переднего и заднего конца полосы. Передний конец с ПТМ подаётся к листовым ножницам, где производится обрезка дефектного конца полосы (обрезается участок полосы длиной не более 1-го метра). Обрезки полосы подают в короб уборочной тележки №1. Подготовленная полоса транспортируется к ножницам для выравнивания концов полосы по ширине, где задний конец предыдущего рулона или передний конец последующего рулона, имеющий большую ширину, чем стыкуемый, обрезается до ширины меньшей полосы.

Подготовленные концы полос одинаковой ширины подаются через центрирующие ролики в стыкосварочную машину (ССМ), где производится сварка.

После сварки и зачистки грата головная часть стана разгоняется до рабочей скорости, и полоса транспортируется в петлевое устройство (ПУ).

Непрерывная работа стана в период сварки полосы обеспечивается запасом полосы в ПУ. Запас образуется двумя петлеобразующими тележками с приводом от одного электропривода. После заполнения полосой ПУ скорости головной и входной частей стана синхронизируются. В конце размотки рулона скорость движения полосы в головной части снижается, затем для сварки полос головная часть останавливается, а стан продолжает работать непрерывно.

Через ПУ полоса транспортируется натяжными устройствами №1 и №2, при этом полоса центрируется с помощью центрирующих устройств №1-4. Поддерживание восьми ветвей полосы в ПУ осуществляется специальными поворотными поддерживающими роликами.

Натяжное устройство №2 создаёт необходимое натяжение перед клетями стана, в которых полоса обжимается в соответствии с заданной программой обжатия.

Полоса после обжатия до требуемой толщины, пройдя все пять клетей стана, поступает в подающие ролики №1 и №2, а затем в одну из двух моталок. После намотки рулона заданного диаметра или заданного теоретического веса на одну из моталок стан переводится на заправочную скорость (2.5 м/с), увеличиваются усилия прижатия подающими роликами, и производится рез полосы летучими ножницами без нарушения технологического процесса.

Передний конец полосы подающими роликами через магнитный транспортёр и обводной ролик передаётся на следующую моталку, где при помощи ременного захлёстывателя полоса подматывается на барабан моталки. После намотки 3…5 витков захлёстыватель отводится в исходное положение, и стан разгоняется до рабочей скорости. После задачи переднего конца полосы на одну из моталок вилка снимателя поднимается вверх к готовому для снятия рулону. Затем включается привод качания откидных опор для отведения их от барабана моталки. Даётся команда на начало движения тележки снимателя для съёма рулона с барабана моталки. После снятия рулона с моталки все механизмы возвращаются в исходное положение. Вилка с рулоном перемещается к кантователю.

Для контроля технологического процесса прокатки перед первой клетью, в межклетьевых промежутках и за пятой клетью расположены изотопные толщиномеры, в межклетьевых промежутках установлены измерители натяжения, за пятой клетью установлены измеритель зонных натяжений полосы и датчики температуры рабочих валков; в каждой клети установлены преобразователи усилий прокатки.

2. Устройства управления, используемые на производстве холодного проката.

На производстве холодного проката используются контроллеры фирмы “SIEMENS”, которая является одним из мировых лидеров, выпускающих средства автоматизации промышленных предприятий и производств. На предприятии присутствуют контроллеры Simatic S5-155 на дрессировочном стане № 2, Simatic S7-300 и Simatic S7- 400 на прокатных станах. Из перечисленных контроллеров наибольшими преимуществами обладает Simatic S7- 400:

1. Simatic S7-400 – один из самых мощных и быстродействующих микропроцессорных контроллеров, выпускаемых фирмой “SIEMENS”;

3. Удобство при работе с контроллером. Интерфейс с пользователем осуществляется при помощи обычного компьютера (соединённого с контроллером через последовательный порт) и среды программирования Step7 (для операционной системы WINDOWS);

4. Возможность реализации контроллером очень сложных и специфичных алгоритмов. Это возможно благодаря большому количеству стандартных операций, включающих в себя операции булевой алгебры, операции сравнения, арифметические операции, операции пересылки, системные операции, коммуникационные операции и так далее;

5. Контроллер позволяет подключать к себе большое количество входных и выдавать большое количество выходных. Это достигается благодаря широкой гамме входных и выходных модулей с различными номиналами напряжений и токов;

7. Возможность объединения нескольких контроллеров в один комплекс и создания систем децентрализованной периферии на базе станций ЕТ 200;

8. Удобная и информативная индикация текущего состояния контроллера (самодиагностика). При сбоях в работе контроллера можно очень легко и быстро обнаружить неисправность и причину, вызвавшую её.

металл дрессировочный прокат

Рис. 1 – внешний вид контроллера Simatic S7-400

Рис. 2 – внешний вид контроллера Simatic S7-300

Рис. 3 – внешний вид контроллера Simatic S5-155

Заключение

На практике я узнала как применять теоретические знания, приобретенные в институте, на практике. Узнала производство.

Литература

1. Комиссарчик В.Ф. Автоматическое регулирование технологических процессов: Учебное пособие (Издание второе, расширенное) // Тверь. ТГТУ, 2001. -248 с.

2. Программируемые контроллеры S7-400, М7-400. Справочное руководство C79000-G7076-C411-02.

3. Безсонов Н.В. Пособие для расчета экономического эффекта от использования изобретений и рационализаторских предложений // М.: ВНИИПИ, 1983. – 98 с.

4. Строительные нормы и правила: СниП II-4-79 Естественное и искусственное освещение // М.:1980. 96 с.

5. Инструкция по охране труда ИОТ-62-1302 // Череповец. 2002 – 51 с.

6. Технологическая инструкция. Прокат полос на 5-ти клетевом стане 1700. ТИ 105-ПХЛ-2-91 // Череповец. 1991. – 42 с.

7. Белов С.В. Безопасность жизнедеятельности // М.: Высшая школа. 1999. – 448 с.

Размещено на Allbest.ru

Подобные документы

    Сущность процесса прокатки металла. Очаг деформации и угол захвата при прокатке. Устройство и классификация прокатных станов. Прокатный валок и его элементы. Основы технологии прокатного производства. Технология производства отдельных видов проката.

    реферат , добавлен 18.09.2010

    Схема деформации металла на роликовых станах холодной прокатки труб, ее аналогичность холодной прокатке труб на валковых станах. Конструкция роликовых станов. Технологический процесс производства труб на станах холодной прокатки. Типы и размеры роликов.

    реферат , добавлен 14.04.2015

    Описание непрерывного стана 1200 холодной прокатки Магнитогорского металлургического комбината им. В.И. Ленина. Оборудование и технология прокатки. Выбор режимов обжатий и расчет параметров, рекомендации по совершенствованию технологии прокатки.

    курсовая работа , добавлен 27.04.2011

    Описание выбора цеха холодной прокатки, прокатного стана и разработка технологического процесса для производства листа шириной 1400мм и толщиной 0,35мм из стали 08кп производительностью 800 тысяч тонн в год (Новолипецкий металлургический комбинат).

    реферат , добавлен 15.02.2011

    Характеристика производства холоднокатаных листов. Исходная заготовка и ее подготовка к прокатке, типы станов холодной прокатки. Технология производства листов из углеродистой стали, виды дефектов и их предотвращение, технико-экономические показатели.

    курсовая работа , добавлен 17.12.2009

    Назначение холоднокатаного листа из стали 08Ю и его структура в деформированном состоянии. Характеристика горячекатаного проката. Мероприятия по контролю качества. Достоинства оборудования для термической обработки холоднодеформированного металла.

    курсовая работа , добавлен 26.10.2014

    Техническая характеристика исходных материалов для прокатного производства: блюмы, слябы, заготовки, сутунки. Подготовка металла к прокатке: зачистка слитков, зачистка полуфабрикатов и нагрев металла перед прокаткой. Технологическая схема прокатки стали.

    контрольная работа , добавлен 19.06.2015

    Технологический процесс отжига холоднокатаного металла в колпаковой печи. Описание последовательности отжига и охлаждения металла. Описание циклограммы процесса отжига. Требование к видам и характеристикам энергообеспечения. Техническое обеспечение АСУ.

    дипломная работа , добавлен 19.01.2017

    Металл для прокатного производства. Подготовка металла к прокатке. Зачистка слитков, полуфабрикатов. Нагрев металла перед прокаткой. Прокатка металла. Схемы косой, продольной и поперечной прокатки. Контроль технологических операций охлаждения металла.

    реферат , добавлен 04.02.2009

    Технология производства холоднокатаного оцинкованного проката, анализ процессов структурообразования при отжиге. Результаты исследований кинетики рекристаллизации феррита, влияющие факторы. Моделирование деформационного упрочнения при холодной прокатке.

Сущность процесса прокатки металла. Очаг деформации и угол захвата при прокатке. Устройство и классификация прокатных станов. Прокатный валок и его элементы. Основы технологии прокатного производства. Технология производства отдельных видов проката.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Введение

1 Сущность процесса прокатки

2 Устройство и классификация прокатных станов

2.1 Классификация станов по типу рабочих клетей

2.2 Классификация станов по назначению

3 Основы технологии прокатного производства

4 Технология производства отдельных видов проката

Заключение

Литература

Введение

Производство металла имеет большое значение для развития народного хозяйства и роста благосостояния людей. От успешного развития металлургии в значительной мере зависит обеспечение металлом машиностроения, машиностроительства, транспорта, сельского хозяйства и других областей народного хозяйства. Технологический процесс получения готового проката является завершающей стадией металлургического производства. Через прокатные цеха проходит почти вся сталь, выплавляемая в сталеплавильных цехах, поэтому наряду с увеличением производства проката существует проблема повышения эффективности прокатного производства и качества готового продукта. Особенностью развития прокатного производства является переход к непрерывным процессам прокатки. Это позволяет существенно увеличить производительность прокатных станов и качество их продукции. Обеспечение непрерывной схемы прокатки требует существенного повышения уровня автоматизации технологических процессов и обеспечения оптимальности управления.
Управление технологическим процессом, проблема выбора оптимальной технологии связаны с выбором критерия оценки качества. Задачу выбора таких критериев можно определить как задачу определения качества технологическогопроцесса.

Актуальность темы реферата состоит в том, что с увеличением производства проката существует проблема повышения эффективности прокатного производства и качества готового продукта. Таким образом, процесс прокатки является.

Целью данной работы является изучение и обобщение теоретической литературы по данной теме.

1 Сущность процесса прокатки

Прокатка металла осуществляется при прохождении его между валками, вращающимися в разных направлениях (рис. 21.1). При прокатке металл обжимается, в результате чего толщина полосы уменьшается, а ее длина и ширина увеличиваются. Разность между исходной h 0 . и конечной h 1 , толщинами полосы называют абсолютным обжатием:

Разность между конечной b 1 и исходной b 0 ширинами полосы называют абсолютным уширением

B = b t — b 0 .

Величину деформации полосы при прокатке характеризуют следующие показатели (коэффициенты):

относительное обжатие — отношение абсолютного обжатия к исходной толщине полосы;

е = ?h/h 0 , или е = (?h/h 0)100 %;

коэффициент обжатия — отношение исходной толщины к конечной

коэффициент вытяжки — отношение длины полосы после прокатки l 1 к исходной длине l 0:

Поскольку объем металла в процессе прокатки не изменяется, то

h 0 b 0 l 0 = h 1 b 1 l 1 , отсюда

м = l 1 / l 0 = h 0 b 0 / h 1 b t = F 0 / F 1

Таким образом, длина полосы при прокатке увеличивается пропорционально уменьшению ее поперечного сечения. Коэффициенты обжатия, вытяжки и уширения характеризуют высотную, продольную и поперечную деформацию металла.

Металл соприкасается с каждым из валков по дуге АВ (рис. 1.), которую называют дугой захвата. Угол а, соответствующий этой дуге, называют углом захвата.

Рис.1. Схема прокатки металла

Объем металла, ограниченный дугами захвата АВ, боковыми гранями полосы и плоскостями входа АА металла в валки и выхода ВВ металла из них, называют очагом деформации металла. Длина этого очага

Угол захвата определяют по формуле

Рис. 21.2. Очаг деформации и угол захвата при прокатке

Эта формула выражает зависимость между углом захвата а, обжатием Ah и диаметром валков D.

Процесс прокатки металла обеспечивается трением, возникающим по контактным поверхностям валков с прокатываемой полосой. В момент захвата со стороны каждого валка на металл действуют две силы (рис. 21.3): нормальная (радиальная) сила N и касательная (тангенциальная) сила Т. Из механики известно, что при относительном движении двух тел сила трения равна нормальной силе, умноженной на коэффициент трения

Отношение силы трения к нормальной силе равно тангенсу угла трения в

Для осуществления захвата металла валками необходимо, чтобы соблюдалось условие: f>tga, tg в >tga, в >a.

Максимально допустимый угол захвата при прокатке зависит от материала валков и прокатываемой полосы, состояния их поверхности, температуры и скорости прокатки. Обычно при прокатке блюмов и крупных заготовок максимальный угол захвата составляет 24.. .32°, при горячей прокатке листов и полос– 15. ..20°, при холодной прокатке листов и лент со смазкой–2. ..10°.

При расчете на прочность валков и других деталей рабочей клети прокатного стана и при определении мощности двигателя стана необходимо знать усилие прокатки, которое определяют по формуле

Где pc P — среднее давление прокатки; F — горизонтальная проекция контактной площади металла с валком.

При прокатке простых профилей (листов, полос и заготовок прямоугольного и квадратного сечений) контактная площадь определяется произведением средней ширины полосы в очаге деформации на длину очага деформации. При прокатке сложных профилей (уголков, швеллеров, балок, рельсов и т. п.) контактную площадь определяют графически или по приближенным формулам. Среднее давление прокатки рассчитывают по формулам или находят опытным путем.

2 Устройство и классификация прокатных станов

Главная линия прокатного стана состоит из следующих основных узлов: рабочей клети 1, шпинделей 2, шестеренной клети 3, коренной муфты 4, редуктора 5, моторной стеренной клети 3, коренной муфты 4, редуктора 5, моторной муфты 6, электродвигателя 7. В рабочей клети осуществляется прокатка металла. Она состоит (рис.21.5) из двух станин 1, предназначенных для установки в них валков 2 и для восприятия усилия прокатки, передаваемого через опоры шеек. Станины в верхней части соединяются траверсой 3. Прокатные валки 2 укреплены в подушках с подшипниками качения 5. Механизм 4 для установки верхнего валка расположен в верхней части станин.

Прокатные валки обжимают металл и придают ему требуемую форму. Прокатный валок (рис. 21.6) состоит из бочки 3 (гладкой или с ручьями 4), шеек 2, расположенных с обеих сторон бочки и опирающихся на подшипник валка, трефов 1, предназначенных для соединения валка со шпинделем. Валки изготовляют из чугуна и стали. Мягкие чугунные валки применяют при черновой горячей прокатке стали. На блюмингах, слябингах, обжимных клетях сортовых станов и на станах холодной прокатки листов применяют литые или кованые стальные валки. Кованые валки несколько прочнее литых, но дороже в 1,5. ..2 раза, поэтому их применяют реже. Для листовых станов применяют валки из легированной стали (хромоникелевой и хромомолибденовой).

Рис. 21.6. Прокатный валок и его элементы

Для прокатных станов применяют двигатели постоянно или переменного тока (асинхронные и синхронные). Так как частота вращения быстроходных двигателей обычно не соответствует частоте вращения валков в прокатных клетях, между двигателями и клетями устанавливают редукторы. В прокатим клетях вращающий момент двигателя необходимо распредели между несколькими валками. Для этого применяют шестеренные клети. Крутящий момент от двигателя к валкам передается при помощи шпинделей и муфт.

2.1 Классификация станов по типу рабочих клетей

В зависимости от числа и расположения валков в клети стан разделяют на двухвалковые, трехвалковые, четырехвалковые многовалковые, универсальные.

Станы двухвалковые имеют рабочие клети (рис. 21.7, а) с двумя валками с постоянным направлением вращения. Полоса между валками проходит один раз. Реверсивные двухвалковые станы имеют переменное направление вращения валков для прохождения металла между валками несколько раз (блюминги, слябинги).

Станы трехвалковые имеют в рабочей клети три прокатных палка с постоянным направлением вращения, расположенных и одной вертикальной плоскости (рис. 21.7,6). Для задачи прокатываемой полосы между верхним и средним валками служат подъемно-качающиеся столы, установленные с одной или обеих сторон клети. К этому типу станов относят сортовые линейные станы.

Станы четырехвалковые (рис 21.7 в) имеют в рабочей клети четыре валка в одной вертикальной плоскости. Два валка меньшего диаметра являются рабочими, два валка большего диаметра являются -опорными. Эти станы применяют при горячей и холодной прокатке листовой и полосовой стали.

Многовалковые станы (шести-, двенадцати- и двадцативалковые) (рис 21.7 г) широко применяют в последние годы. Благодаря малому диаметру валков (10…30 мм) и большой жесткости рабочей клети позволяют катать тончайшую ленту. Рабочие валки этих станов бесприводные, они опираются на ряд приводных валков, которые в свою очередь опираются на ряд опорных валков. Такая схема обеспечивает практически полное отсутствие прогиба рабочих валков.

Универсальные станы (рис. 21.7,5) применяют при прокатке широкополосовой стали, листов и слябов. Металл в универсальных станах обжимается горизонтальными и вертикальными валками; последние обеспечивают получение ровных и гладких кромок проката. Универсальные балочные станы применяют при прокатке балок высотой до 1000 мм (рис. 21.7, е). Вертикальные валки рабочих клетей этих станов являются неприводными и располагаются между опорами подшипников горизонтальных валков в одной плоскости с ними.

2.2 Классификация станов по назначению

Станы разделяют на обжимные, заготовочные, сортовые, полосовые, листовые, трубопрокатные и станы специального назначения.

К обжимным станам относят блюминги и слябинги — крупные станы с валками диаметром 800. ..1500 мм для прокатки слитков массой 3. . .28 т и более в заготовки крупных размеров (блюмы и слябы). Эти заготовки являются исходным мате риалом для заготовочных крупносортных и листовых станов.

Заготовочные станы имеют валки диаметром 450.. .850 м На этих станах прокатывают блюмы в заготовки меньших размеров (60×60.. .150Х150 мм) для получения затем сортовой стали и проволоки. Наиболее совершенными станами являются непрерывные заготовочные станы, устанавливаемы непосредственно за блюмингами, и станы радиально-сдвиговой деформации. Применяют также заготовочные станы линейного типа.

Сортовые станы в зависимости от размеров сортовой стал и назначения изделий разделяют на рельсобалочные с валкам диаметром 750.. .900 мм для прокатки железнодорожных рель сов, балок, швеллеров и других крупных профилей; крупно сортные с валками диаметром 500.. .750 мм; среднесортные с валками диаметром 350.. .450 мм; мелкосортные с валкам диаметром 250.. .325 мм и проволочные с диаметром валко 150. ..250 мм.

Расположение рабочих клетей сортовых станов может быт различным. В сортовом стане линейного типа все клети расположены в одну или несколько линий. Существенным недостатком этих станов является одинаковая частота вращения вал ков во всех клетях данной линии, вследствие этого на ни нельзя прокатывать металл со скоростью, возрастающей по мере увеличения длины прокатываемой полосы.

Весьма совершенны непрерывные сортовые станы. Рабочие клети в этих станах располагаются последовательно одна за другой. Полоса одновременно прокатывается во всех ил нескольких клетях. Скорость прокатки полосы по мере уменьшения ее сечения увеличивается. На непрерывных станах можно достичь очень высокой производительности при полном исключении ручного труда. Благодаря автоматизации на этих станах можно применять скорость прокатки 60. ..80 м/с и более. В современных непрерывных сортовых станах каждая рабочая клеть имеет индивидуальный привод, что позволяет устанавливать скорость прокатки для каждой клети. У этих станов имеются клети с вертикальными валками, что исключает кантовку полосы в кантующих проводках.

Полосовые станы с диаметром валков около 300 мм являются непрерывными, они предназначены для прокатки лент, полос и штрипсовых заготовок для сварных труб.

Проволочные станы прокатывают проволоку (катанку) толщиной 5.. .10 мм. Современные проволочные станы строят непрерывными с блоками чистовых клетей.

Листовые станы для горячей прокатки листовой стали толщиной 1,2. ..60 мм и более имеют бочки валков длиной 800… 5000 мм. Толстолистовую сталь шириной 1000. ..2500 мм прокатывают на непрерывных и полунепрерывных широкополосных станах.

Листовые станы для холодной прокатки листов толщиной 0,05. ..4 мм имеют бочки валков длиной 700.. .2800 мм. При холодной прокатке тонкой ленты из стали различных марок и цветных металлов широко применяют четырех-, двенадцати- и двадцативалковые станы, а также четырех- и пятиклетьевые непрерывные четырехвалковые станы (рис. 21.8).

Трубопрокатные станы предназначены для производства бесшовных стальных труб. Процесс прокатки бесшовных труб

состоит из двух операций: получения из слитка или заготовки толстостенной гильзы и последующей раскатки этой гильзы в трубу заданного диаметра. Для производства сварных труб наибольшее применение получили непрерывные станы, на которых стальные трубы изготовляют электросваркой.

К станам специального назначения относят бандаже-, колесопрокатные, шаропрокатные, детали прокатные и др.

3 Основы технологии прокатного производства

Сортамент проката

Прокат можно разделить на пять основных групп: 1) заготовки всех видов, 2) сортовая сталь, 3) листовая сталь, 4) специальные виды проката, 5) трубы.

Заготовки всех видов или полупродукт включают блюмы, слябы, заготовки передельные, осевые, трубные, кузнечные и другие. Они являются исходным материалом для последующей прокатки сортовых, листовых профилей, специальных видов проката и бесшовных труб.

Сортовую сталь (рис. 22.1), в свою очередь, можно разделить на профили массового потребления и профили специального назначения. К первой группе профилей относят круглую квадратную, .шестигранную, полосовую и угловую сталь, проволоку, швеллеры, двутавровые балки и др. Ко второй группе рельсы, профили особой формы, применяемые в строительств (шпунтовые сваи и др.), машиностроении (автообод, кольцо автообода, опорная планка направляющего ножа трактора др.) и других отраслях народного хозяйства.

Листовая сталь в зависимости от толщины листов разделяется на две основные группы: толстолистовую — толщина 4. ..160 мм, тонколистовую — толщиной 1,2. ..4 мм.

К специальным видам проката относят бандажи, шар цельнокатаные колеса и периодические профили (переменно поперечное сечение по длине полосы).

Стальные трубы разделяют на бесшовные и сварные. Доля стальных труб в общем выпуске проката с каждым годом увеличивается, особенно быстро растет производство сварных труб.

Размеры и допуски на прокат, требования к качеству поверхности, механическим и технологическим свойствам определяются государственными и отраслевыми стандартами (ГОСТами, ОСТами) или техническими условиями (ТУ).

Основные технологические о перации прокатного производства

Технологический процесс прокатки представляет собой комплекс последовательных термомеханических операций, выполняемых на соответствующем оборудовании и в определенной последовательности и предназначенных для получения продукции с заданными показателями качества (точности формы и геометрических размеров, состояния поверхности и т. д.). Наиболее общая схема технологического процесса прокатки включает операции подготовки исходного металла к прокатке, нагрева перед обработкой давлением, собственно прокатки для получения заданного профиля, отделку проката и контроль его качества. В зависимости от стадии прокатки (производство заготовок или готовой продукции из слитка или литой заготовки) и вида проката число технологических операций и их последовательность может изменяться.

Рис . 22.1. Профили сортовой стали

1 — квадратный; 2 — круглый; 3 — шестигранный; 4 — полосовой; 5–автообод; 6 — угловой (а — равнобокий, б — нерав-нобокий); 7 — рельс железнодорожный; 8 — рельс трамвайный; 9 — балочный; 10 — швеллерный; 11 — опорная планка направляющего колеса трактора; 12 — зетовый профиль; 13 — шпунт

Схема технологического процесса производства сортового проката из слитков приведена следующая:1 -слиток (1 слитки), 2-нагрев слитков в нагревательных колодцах, 3-прокатка на блюминге, 4- зачистка поверхностных дефектов на машине огневой зачистки, 5-раскрой раската на ножницах на блюмы., 6-прокатка на непрерывном заготовочном стане, 7-раскрой раската на заготовки, 8-охлаждение на холодильнике,9- зачистка поверхностных дефектов (2-9 – получение полупродукта), 10-нагрев заготовок в методической печи, 11-прокатка на сортовом стане, 12-раскрой проката на заданные длины, 13-охлаждение проката (10-13 -получение готового сортового проката), 14-термическая обработка проката, 15 -правка, 116-зачистка поверхностных дефектов, 17-упаковка, маркировка, взвешивание, отгрузка готовой продукции (14-17–отделка проката) .

При подготовке исходного металла к прокатке с него удаляют различные поверхностные дефекты, что увеличивает выход готового проката. Эта операция особенно необходима при прокатке качественной углеродистой и легированной стали. При прокатке контролируют начальную и конечную температуру, заданный режим обжатия. Для контроля за состоянием

перекатываемого металла, называют вытяжными. К вытяжным калибрам относят прямоугольные (ящичные), ромбические, квадратные, овальные и др.

Для постепенного приближения поперечного сечения прокатываемой заготовки к готовому профилю применяют подготовительные или предчистовые калибры. Форма чистового калибра точно соответствует форме готового проката, но размеры калибра приняты с учетом коэффициента температурного расширения металла и минусового допуска.

Важнейшая задача калибровки — расчет режима обжатий при прокатке. Устанавливая режим обжатия, учитывают пластичность металла и его сопротивление деформации, допустимый угол захвата, прочность валков и деталей стана, мощность двигателя, величину уширения.

4 Технология производства отдельных видов проката

Производство блюмов и слябов. На блюмингах и слябингах прокатывают слитки в крупные заготовки — блюмы и слябы, имеющие соответственно квадратное и прямоугольное сечение. Масса и форма слитков зависят от диаметра валков, мощности двигателя стана, марки стали и вида получаемой заготовки.

Масса слитка должна быть такой, чтобы обеспечить максимальную производительность стана, требуемое число блюмов и слябов, наибольший выход годного проката. Для прокатки слябов нужны, например, слитки массой 16. ..28 т, а для прокатки блюмов — 3,0. ..12 т.

Из указанных слитков прокатывают слябы в соответствии с ГОСТ 25715–89 сечением 100.. .350X300.. .2200 мм и длиной 1,2. ..11 м, блюмы по отраслевому стандарту ОСТ 14-13–75 сечением 140 X 140.. .450 X 450 мм, длиной 1…6 м.

Для нагрева слитков при прокатке блюмов и слябов применяют нагревательные колодцы (см. рис. 20.5). В нагревательные колодцы блюмингов и слябингов поступает свыше 90 % всех слитков непосредственно из сталеплавильного цеха в горячем состоянии при температуре 800.. .850 °С. При горячем всаде слитков расход топлива составляет 1050… 1250 кДж/кг. Нагревательные колодцы, как правило, располагают в отдельном здании, примыкающем к основному зданию блюминга или слябинга. На рис. 22.7 показана схема расположения оборудования современного двухвалкового реверсивного блюминга с диаметром валков 1300 мм. Слитки, нагретые в колодцах до температуры 1200.. .1250 °С, транспортируют к стану, где они подвергаются деформации в валках блюминга сначала на гладкой бочке, а затем в системе ящичных калибров.

Обжатие слитка за отдельный проход при производстве блюмов из углеродистой и низколегированной стали составляет в среднем 65.. .80 мм, а максимальное обжатие — 90… 120 мм. При таких обжатиях слиток углеродистой стали массой 7,5 т прокатывают на блюминге 1300 в блюм сечением 350Х Х350 мм за 13 проходов, а слиток легированной стали I2X18H10T массой 3,3 т на блюминге 1000 в блюм сечением 180X180 мм –за 19 проходов. Выход годных блюмов из слит-ков кипящей стали составляет 91…92,5%, из слитков спокойной стали — 80. ..82%. На многих блюмингах основные операции технологического процесса прокатки (подача слитков, работа рольгангов, главный привод валков, нажимное устройство и т. д.) автоматизированы.

Производительность блюмингов составляет 3,5.. .6,0 млн. т и более слитков в год. Продолжительность прокатки одного слитка составляет при этом 50.. .60 с.

Полученные на блюминге раскаты после удаления поверхностных дефектов на машинах огневой зачистки (см. рис. 22.7) подвергают раскрою на блюмы. В ряде случаев на блюмингах прокатывают также и слябы. Кроме того, слябы прокатывают на специальных обжимных станах — слябингах (см. рис. 21.7,5), которые имеют горизонтальные и вертикальные валки с гладкой бочкой. Для сортовых станов требуются заготовки меньшего сечения, чем блюмы. Поэтому блюмы без промежуточного подогрева направляют для дальнейшей прокатки на заготовочных станах, которые обычно располагают в непосредственной близости от блюмингов. Такое расположение станов позволяет прокатывать заготовки из крупных слитков с одного нагрева, что экономически выгодно. В качестве заготовочных станов применяют непрерывные, а также одно клетьевые двухвалковые реверсивные станы, реже трехвалковые одно-, двухклетьевые станы продольной прокатки. Весьма высокопроизводительным является современный заготовочный стан радиально-сдвиговой прокатки, позволяющий подвергать деформации круглые или многогранные слитки и литые заготовки с вытяжкой за один проход 3.. .6 и более и обеспечивающий интенсивную проработку литой структуры. Станы радиально-сдвиговой прокатки могут быть использованы как заготовочные или взамен черновых групп клетей сортовых станов.

Производство фасонных профилей проката на рельсобалочных станах. На этих станах прокатывают железнодорожные и трамвайные рельсы, балки, швеллеры, шпунты, а также угловую, круглую и квадратную сталь большого сечения.

Рельсы железнодорожные широкой колеи производят трех типов: Р50 по ГОСТ 7174–87, Р65 по ГОСТ 8161–86 и Р75 по ГОСТ 16210–88. Тип рельса указывает на массу 1 м длины. Балки нормального типа в соответствии с ГОСТ 8239–85 имеют высоту 100…600 м. На универсальном балочном стане освоили производство широкополочных двутавровых балок высотой до 1000 мм. Швеллеры по ГОСТ 8240–85 производят высотой от 50 до 400 мм и шириной полок от 32 до 115 мм..

Рельсы производят из высокоуглеродистых сталей марок М76, М74 по ГОСТ 24182–86 и НБ67 по ГОСТ 16852–85 (с содержанием 0,67…0,76% С), а балки, швеллеры и шпунты изготовляют преимущественно из кипящей стали марок СтО, СтЗ, Ст4 и Ст5 по ГОСТ 380–88.

Современные рельсобалочные станы располагают обычно в две (рис. 22.9) и более линии. Первую линию рельсобалочных станов составляет двухвалковая реверсивная черновая, или обжимная, клеть 1. Конструкция этой клети аналогична конструкции клети блюминга; диаметр ее валков 900.. .950 мм, длина бочки 2300 мм. В качестве привода черновой клети 950 служит реверсивный двигатель мощностью 5000 кВт. Во второй линии стана обычно имеются две черновые трехвалковые клети 2 с диаметром валков 850 мм, приводом для которых является реверсивный двигатель мощностью 8100 кВт. Чистовая двухвалковая клеть 3 с диаметром валков 850 мм. Приводом чистовой клети является электродвигатель постоянного тока мощностью 2100 кВт.

Заключение

Итак изучив теоретическую литературу по данной теме, можно сделать следующие выводы:

Прокатный стан – это совокупность привода, шестеренной клети, одной или нескольких рабочих клетей. Прокатные станы классифицируют по трем основным признакам: по числу и расположению валков; по числу и расположению рабочих клетей; по их назначению.

Стан дуо имеет два валка, которые вращаются либо в одном направлении (нереверсивные станы), либо в разных направлениях (реверсивные станы). Последнее позволяет пропускать обрабатываемый материал в обе стороны.

Стан кватро имеет два рабочих и два опорных валка, расположенных один над другим. Приводными являются рабочие валки.

Много валковые станы: двенадцативалковые и двадцативалковые имеют также только два рабочих валка, а все остальные являются опорными. Валки приводятся через промежуточные опорные валки. Такие конструкции станов позволяют применять рабочие валки малого диаметра, благодаря чему увеличивается вытяжка и снижается давление металла на валки.

Универсальные станы, кроме горизонтальных валков, имеют также и вертикальные, расположенные с одной и обеих сторон горизонтальных валков.

По расположению рабочих клетей станы могут быть одноклетьевыми и многоклетьевыми с линейным и последовательным расположением клетей. У линейных станов клети расположены в одну или несколько линий; в каждой линии все валки связаны между собой и вращаются с одной скоростью. Последнее является существенным недостатком этих станов, так как препятствует значительному увеличению скорости прокатки по мере увеличения длины прикатываемой полосы. Поэтому в некоторых случаях для повышения производительности станов клети располагают в несколько линий с разной скоростью прокатки.

Производительность прокатки можно повысить последовательным расположением клетей в непрерывных станах. Привод рабочих клетей непрерывных станов может быть группой, когда несколько клетей приводятся в движение от одного двигателя, или индивидуальным, когда каждая клеть имеет свой двигатель. В обоих случаях окружная скорость каждой последующей пары валков должна быть больше скорости предыдущей на строго определенную величину. На непрерывных станах можно прокатывать полосу с натяжением, что позволяет увеличить обжатия. Внедрение непрерывности всего процесса прокатки – одно из основных направлений технического прогресса в прокатном производстве.

Прокатные станы по назначению подразделяются на станы для производства полупродукта и станы для выпуска готового проката. К первым станам относятся обжимные станы (блюминги и слябинги) для прокатки слитков в продукт крупного сечения для последующей прокатки на сортовой или листовой металл и заготовочные для получения полупродукта более мелкого сечения из блюмов или слитков небольшой массы.

Станы для выпуска готового проката характеризуются видом выпускаемой продукции: рельсобалочные. Сортовые, листопрокатные, трубопрокатные и станы для специальных видов проката. Размер блюмингов. Слябингов, заготовочных, рельсобалочных и сортовых станов обуславливается диаметром бочки валков; размер листовых станов – длиной бочки, а размер трубопрокатных станов – наружным диаметром прокатываемых труб.

Литература

Ю.М. Лахтин, В.П. Леонтьева. Материаловедение. М.:Машиностроение, 1990

1. Геллер Ю.А. Рахштадт А.Г. Материаловедение. Методы анализа, лабораторные работы и задачи. М.: Металлургия, 1984г.

2. Бернштейн М.Л.. Металловедение и термическая обработка стали.М.: Металлургия, 1983

3.Богодухова С.И., Бондаренко В.А. Технологические процессы машиностроительного производства. Оренбург, ОГУ, 1996

4.Жадан В.Т., Полухин П.И. Материаловедение и технология материалов. М.: Металлургия, 1994

5. Лахтин Ю.М, В.П. Леонтьева. Материаловедение. М.: Машиностроение, 1990

Подобные документы

    Техническая характеристика исходных материалов для прокатного производства: блюмы, слябы, заготовки, сутунки. Подготовка металла к прокатке: зачистка слитков, зачистка полуфабрикатов и нагрев металла перед прокаткой. Технологическая схема прокатки стали.

    контрольная работа , добавлен 19.06.2015

    Металл для прокатного производства. Подготовка металла к прокатке. Зачистка слитков, полуфабрикатов. Нагрев металла перед прокаткой. Прокатка металла. Схемы косой, продольной и поперечной прокатки. Контроль технологических операций охлаждения металла.

    реферат , добавлен 04.02.2009

    Схема деформации металла на роликовых станах холодной прокатки труб, ее аналогичность холодной прокатке труб на валковых станах. Конструкция роликовых станов. Технологический процесс производства труб на станах холодной прокатки. Типы и размеры роликов.

    реферат , добавлен 14.04.2015

    Роль и задачи холодной прокатки металла. Детальный анализ технического процесса производства холоднокатаного листа. Характеристика колпаковых печей. Принципы работы дрессировочных станов. Устройства управления, используемые на производстве проката.

    отчет по практике , добавлен 25.06.2014

    Конструктивно-технологическая характеристика изделия. Описание сплава АМг6. Течение металла при горячей прокатке. Выбор прокатного стана, размеров слитка и режимов обжатий. Технология производства листов. Режимы их окончательной термической обработки.

    курсовая работа , добавлен 07.10.2013

    Классификация и устройство прокатных станов, история их возникновения. Характеристика конструкций основных деталей оборудования прокатных станов, их виды и назначение. Автоматика крупных прокатных станов, объединённые локальные системы в ее составе.

    контрольная работа , добавлен 14.04.2011

    Раскрытие сущности пластичной деформации металла как основы технологии сортопрокатного производства. Выбор отделочных калибров и расчет площадей сечений раската прокатных валков круглого профиля диаметром 5 мм. Расчет усилий и скоростной режим прокатки.

    курсовая работа , добавлен 28.01.2013

    Анализ технологического процесса и оборудования прокатного стана, анализ технологических схем производства толстого листа, предлагаемая технологическая схема прокатки. Выбор оборудования прокатного стана, разработка технологии прокатки и расчет режимов.

    курсовая работа , добавлен 04.05.2010

    Описание непрерывного стана 1200 холодной прокатки Магнитогорского металлургического комбината им. В.И. Ленина. Оборудование и технология прокатки. Выбор режимов обжатий и расчет параметров, рекомендации по совершенствованию технологии прокатки.

    курсовая работа , добавлен 27.04.2011

    Полный металлургический цикл. Характеристика доменного, сталеплавильного и прокатного производства. Состав оборудования прокатных станов. Расчет на износ узлов трения, динамической нагруженности элементов системы и усталостной долговечности деталей.

Способом холодной прокатки получают трубы диаметром 3-450 мм с толщиной стенки 0,08-35мм из углеродистых и легированных сталей и сплавов цветных металлов.

Холодную прокатку тонкостенных труб производят на станах периодического действия, сокращенно называемых станами ХПТ. В настоящее время существуют станы холодной прокатки труб двухвалковые, роликовые и планетарные. Наибольшее распространение получили двухвалковые станы.

Стан холодной прокатки труб представляет собой двухвалковый стан с периодическим режимом работы, рабочей клети которого сообщается возвратно-поступательное движение при помощи кривошипно-шатунного механизма (рис. 59).

Рис. 59. Схема механизмов привода перемещения рабочей клети и поворота валков стана ХПТ: І иІІ – заднее и переднее крайнее положения клети;1 – кривошип;2 – шатун;3 – станина рабочей клети;4 – оправка;5 – валок;6 – полудисковый калибр;7 – стержень оправки;8 – ведомые шестерни;9 – ведущая шестерня;10 – зубчатая рейка

Рабочие валки, установленные в клети на опорах, совершают в процессе прокатки качательное движение посредством насаженных на их шейки шестерен, крайние из которых на нижнем валке находятся в зацеплении с зубчатыми рейками, закрепленными неподвижно на боковых стенках станины.

В исходном положении рабочей клети (І , рис. 59) трубная заготовка при помощи специального механизма передвигается в направлении прокатки на расстояние 3-18мм ,называемое “подачей”. Затем при движении рабочей клети вперед происходит редуцирование поданного участка заготовки по диаметру и обжатие по стенке в кольцевой постепенно уменьшающейся щели, образуемой ручьем калибров и оправкой.

В процессе прокатки задний конец заготовки зажат и неподвижен в осевом направлении.

В крайнем переднем положении рабочей клети (II , рис. 59) происходит поворот прокатываемой заготовки вместе с оправкой на 60-90°. Благодаря этому при обратном движении рабочей клети калибрами производится отделка прокатанного участка трубы с целью придания ему формы правильной окружности заданных размеров. На оправке производится обкатка конической части заготовки переменного сечения (называемой рабочим конусом), в результате чего, вследствие некоторого истечения металла в боковые выпуски ручья, в рабочем конусе происходит отставание внутренней поверхности от оправки. Это облегчает перемещение заготовки вперед относительно неподвижной оправки при очередной “подаче”. Далее операции повторяются.

На калибрах в начале и в конце ручья имеются выточки, называемые зевами, освобождающие заготовку и трубу от соприкосновения с калибрами при подаче и повороте (эти моменты показаны на рис. 59).

Формоизменение заготовки при прокатке происходит по схеме, приведенной на рис. 60.

Деформация металла осуществляется вследствие перекатывания калибров (рис. 59). Калибры представляют собой полудиски, закрепленные в вырезах рабочих валков. По полуокружности калибров нарезан рабочий ручей переменногосечения. Коническая оправка прикреплена на конце неподвижного стержня и установлена в щели, образуемой ручьем верхнего и нижнего валков. Деформация поданной порции металла начинается с уменьшения диаметра трубы с весьма незначительным увеличением толщины стенки. После того как внутренняя поверхность рабочего конуса соприкоснется с конической оправкой, деформация по диаметру начинает сопровождаться обжатием стенки трубы.

Расчет калибровки включает в себя определение размеров оправки, выбор длин участков рабочей части ручья (рис. 61), определение допустимой конусности ручья, редуцирования и расчет профиля гребня и развала ручья.

Рис. 61. Разбивка рабочей длины ручья на участки с различной длиной l и диаметромD (развертка и положение оправки в очаге деформации):1-9 – номера контрольных сечений;D ц – диаметр цилиндрической части

Важнейшее место в процессе производства холоднодеформированных труб занимают операции формоизменения исходной заготовки в готовую трубу. Деформацию заготовки проводят в один или несколько циклов в зависимости от ее геометрических размеров, пластических свойств используемого металла, способа деформации, размеров и требований к качеству готовых труб. Каждый цикл – кроме деформации – включает операции термической обработки труб с целью восстановления пластических свойств, а также химическую обработку с целью подготовки поверхности для успешного проведения нового цикла.

К основным достоинствам прокатки труб на станах ХПТ относятся: сведение к минимуму потерь металла в обрезь; возможность достижения высоких обжатий трубы по стенке (до 75-85 %) и диаметру (до 65 %) с использованием конической оправки, что позволяет значительно сократить цикличность деформации; значительное снижение разностенности и допусков по толщине стенки трубы; получения широкого сортамента готовых труб из ограниченного числа типоразмеров заготовок; высокое качество наружной и внутренней поверхности труб, их точность.

Технологическая схема холодной прокатки труб зависит от марки стали или сплава, из которой они изготавливаются, от размера и назначения труб. Со станов холодной прокатки трубы могут получать в виде готовой продукции, при этом их могут прокатывать на одном, двух или трех станах последовательно, или же они могут поступать на холодное волочение после прокатки.

Заготовкой для производства холоднокатаных труб служат горячекатаные, прессованные и сварные трубы.

Рис. 62. Схема технологического процесса производства

холоднодеформированных труб

Технологический процесс производства холоднокатаных труб состоит из ряда последовательных операций (подготовительных, основных и отделочных). При холодной прокатке трубную заготовку (рис. 62) со склада1 подают на инспекторские стеллажи2 , где производят осмотр и отбраковку некачественной продукции. Годные заготовки набирают в пакеты5 . В случае необходимости обрезают концы труб на резцовых трубообрезных станках3, так как для прокатки требуются заготовки с хорошо подготовленными обрезанными концами, а также производят разрезку заготовки, если длина ее превышает допустимую, которую может принять стан. При производстве труб из специальных сталей заготовки подвергают предварительному отжигу в печи. В результате снижается прочность, повышается пластичность, устраняется структурная неоднородность, снимаются остаточные напряжения в металле. Набранные в пакеты5 заготовки подвергают травлению растворами кислот в ванне6, затем промывают в ванне7 с горячей водой, затем струей холодной воды, подаваемой под давлением, в камере8 и нейтрализуют в щелочном растворе в ванне9. После этого заготовки просушивают в печи10 и осматривают на стеллажах11. Заготовки с дефектами подвергают ремонту на шлифовальных станках12 или окончательно бракуют. На годные заготовки наносят твердые покрытия (фосфатирование, оксалатирование, омеднение) и смазки в ванне13. Затем заготовка поступает для прокатки на станы14.

Холодная прокатка листов

Введение.

1. Сортамент.

3. Понятия о калибровке валков.

4. Качество продукции и основные деффекты.

5. Перспективы развития способа производства.

6. Технико-экономические показатели.

Литература.

Введение.

Холодная прокатка по сравнению с горячей имеет два больших преимущества: во-первых, она позволяет производить листы и полосы толщиной менее 0,8-1 мм, вплоть до нескольких микрон, что горячей прокаткой недостижимо; во-вторых, она обеспечивает получение продукции более высокого качества по всем показателям – точности размеров, отделке поверхности, физико-механическим свойствам. Эти преимущества холодной прокатки обусловили ее широкое использование как в черной, так и в цветной металлургии.

Вместе с тем необходимо отметить, что процессы холодной прокатки являются более энергоемкими, чем процессы горячей прокатку При холодной деформации металл упрочняется (наклепывается), в связи с этим для восстановления пластических свойств приходится проводить отжиг. Технология производства холоднокатаных листов включает большое число переделов, требует применения сложного и многообразного оборудования.

В настоящее время доля холоднокатаных листов в общей массе тонколистового проката составляет около 50 %. Производство холоднокатаных листов, полос и лент продолжает интенсивно развиваться. Основную массу (примерно 80%) холоднокатаных листов составляет низкоуглеродистая конструкционная сталь толщиной 0,5-2,5 мм, шириной до 2300 мм. Такую тонколистовую сталь широко используют в автомобилестроении, поэтому часто ее называют автолистом. Методом холодной прокатки производят почти всю жесть – продукцию, идущую в больших количествах для изготовления пищевой тары, в частности консервных банок. Материалом для жести также служит низкоуглеродистая сталь, но в большинстве случаев жесть выпускают с защитным покрытием, чаще всего – оловянным. Жесть прокатывают в виде полос толщиной 0,07-0,5 мм, шириной до 1300 мм. К числу распространенных видов холоднокатаной продукции также относятся: декапир (травленая и отожженная сталь, применяемая при производстве эмалированной посуды и других изделий с покрытиями), кровельный лист (часто выпускается оцинкованным), низколегированные конструкционные стали. Особо следует отметить две важные группы легированных сталей – коррозионностойкую (нержавеющую) и электротехническую (динамную и трансформаторную).

В цветной металлургии холодная прокатка применяется для получения тонких полос, листов и лент из алюминия и его сплавов, меди и ее сплавов, никеля, титана, цинка, свинца и многих других металлов. Наименьшую толщину имеет фольга. Например, алюминиевая фольга выпускается в виде полос минимальной толщиной 0,005мм, шириной до 1000-1500 мм. Разнообразие сортамента холоднокатаной листовой продукции обеспечивается применением прокатных станов различной конструкции, с очень разными техническими характеристиками и уровнями производительности.

1. Производство электротехнической листовой стали

Электротехническая сталь условно делится на динамную и трансформаторную. Само название этих сталей указывает на области их применения. Динамная сталь используется в основном для изготовления электромоторов (динамо-машин) и генераторов, трансформаторная – для изготовления трансформаторов и различных электромагнитных приборов. Электротехнические стали работают в условиях перемагничивания переменным током и должны иметь низкие ваттные (гистерезисные) потери и высокую магнитную индукцию.

Для обеспечения указанных физических свойств сталь должна содержать большое количество кремния и минимальное, как можно меньшее количество углерода и других примесей. Обычно содержание кремния находится в пределах: в динамной стали – 1-1,8%, в трансформаторной – 2,8-3,5 %. Кроме того, сталь должна иметь особую структуру – крупнозернистую и текстурованную. К числу стандартизованных марок электротехнической стали относятся: Э11, Э12, Э13, Э21, Э22, Э31, Э32, ЭЗЮ, Э320, ЭЗЗО и др.(Буквы и цифры мерках электротехнической стали обозначают; Э – электротехническая сталь; перввя цифра – степень легирования стали кремнием: вторая цифра – гаранторовавнные электрические и магнитные свойства; ноль (0) в конце марки означает, что сталь холоднокатаная текстурованная, два нуля (00) – малотекстурованная).

Электротехнические стали выпускаются в виде полос и листов толщиной 0,2-1,0 мм (чаще всего 0,35 и 0,5мм), шириной до 1000мм. Распространенные размеры листов в плане 750 х 1500 мм и 1000 х х 2000 мм. Исходной заготовкой служат горячекатаные полосы толщиной 2-4 мм, поступающие в рулонах с непрерывных станов или станов с печными моталками.

Сопротивление деформации и пластичность электротехнических сталей сильно зависят от процентного содержания кремния. Увеличение его количества в стали приводит к повышению сопротивления деформации и резкому падению пластичности. Поэтому холодная прокатка трансформаторной стали осуществляется значительно труднее, чем прокатка динамной.

2. Технологический процесс и оборудование стана.

Схема расположения оборудования.

Холодная прокатка трансформаторной стали на отечественных заводах осуществляется на одноклетевых реверсивных(рис.1), трехклетевых и пятиклетевом непрерывных и многовалковых станах.

Обязательным условием прокатки трансформаторной стали с большим обжатием является наличие мощного прокатного оборудования пятиклетевых непрерывных либо одноклетевых многовалковых станов и применение высокоэффективных технологических смазок. Сопоставление данных о силовых условиях деформации трансформаторной и малоуглеродистой сталей на одном и том же стане при относительно одинаковых условиях прокатки позволяет сделать вывод, что давления и расход энергии при прокатке трансформаторной стали на 10-15% больше, чем при прокатке малоуглеродистой стали. При увеличении содержания кремния в стали значительно повышается сопротивление металла деформации. Удельное давление металла на валки при холодной прокатке стали с содержанием 4% Si; в четыре раза, а с содержанием 3,5 Si в 2,5 раза больше, чем при прокатке стали 1% Si.

Принятые при холодной прокатке трансформаторной стали интенсивные обжатия в первом пропуске (35-45%) в результате значительной деформации обеспечивают нагрев полосы до 100-150° С, что благоприятно влияет на процесс прокатки рулона в последующих пропусках, так как нагрев полосы до такой температуры (в результате деформации) приводит к значительному снижению сопротивления деформации при прокатке.

Для обезжиривания полосы после холодной прокатки могут быть применены различные способы, в том числе электролитический, химический, ультразвуковой.

В настоящее время для обезжиривания рулонов химическим способом применяют растворы следующего состава, г/дм3:

Сода кальцинированная. . . . . . 50

Тринатрийфосфат………20

Каустическая сода……… 5

Эмульгатор ОП-7 ……… 3

Решающее влияние на качество холоднокатаной трансформаторной стали оказывает термическая обработка – предварительный, промежуточный и окончательный высокотемпературный отжиги.

Изменения магнитных характеристик трансформаторной стали при термической обработке вызываются: а) изменением формы углерода (лучшие свойства получаются, когда углерод находится в виде графита); б) выгоранием углерода и дегазацией металла; в) увеличением размеров зерен; г) рекристаллизацией наклепанной стали (при которой происходит снятие внутренних напряжений, изменение величины зерен и их ориентация),

Промежуточный рекристаллизационный отжиг холоднокатаной трансформаторной стали необходим для снижения твердости ленты после первого передела холодной прокатки. Опыт работы показал, что такой отжиг трансформаторной стали в колпаковых печах с различной защитной атмосферой практически не влияет на снижение содержания углерода в стали.

Высокотемпературный отжиг холоднокатаной трансформаторной

стали проводится в колпаковых печах при 1100-1200° С в вакууме или в сухом водороде.

Мягкие чугунные валки применяют при черновой горячей прокатке стали. На блюмингах, слябингах, обжимных клетях сортовых станов и на станах холодной прокатки листов применяют литые или кованые стальные валки.

Профессиональные мужские инструменты
Добавить комментарий