Дюралюминий. Алюминиевая бронза

Редкий метал так часто поднимается в воздух, участвует в строительстве домов, автомобилей и морских судов, как алюминий. Казалось бы — не самый прочный, не самый стойкий, довольно мягкий… Что такого есть в алюминии, благодаря чему его называют «металлом будущего»?

У алюминия без сомнения есть несколько преимуществ, с которыми сложно поспорить:

Легкость;
— распространенность — алюминий самый распространенный металл на планете Земля;
— простота обработки;

Еще алюминий не выделяет вредных веществ при нагревании и хорошо проводит тепло. Но самое главное — стоит добавить к чистому алюминию немного, всего несколько десятых долей другого элемента, и…. вуаля! Получаете материал с диаметрально противоположными физико-химическими свойствами. Некоторые сплавы на основе алюминия настолько прочны, что при температуре до — 200 градусов по Цельсию сравнимы с титаном и сталью!

Получение и классификация алюминиевых сплавов

Процесс получения алюминиевых сплавов называется легированием. Однако легирование — это скорее не один, а несколько взаимосвязанных процессов. Его суть заключается в том, что в расплавленный алюминий вводят вспомогательные (легирующие) элементы в количестве от нескольких десятых до нескольких тысячных процента.

Доля вспомогательных веществ напрямую зависит от того результата, который необходимо получить. При этом важно учитывать, что алюминий обычно уже содержит в себе железо и кремний. Оба элемента не в лучшую сторону влияют на качество будущего сплава: они уменьшают его стойкость к коррозии, электропроводимость и пластичность.

В связи с тем, что алюминий и алюминиевые сплавы используются в стратегически важных областях, они подлежат обязательной государственной сертификации и маркировке. В России качество сплавов определяется на основе двух ГОСТ: №4784-97 и № 1583-93.

Сплавы из алюминия можно классифицировать по нескольким разным направлениям. По типу вспомогательных (легирующиех) элементов сплавы бывают:

С добавлением присадок (отдельных элементов — цинк, магний, марганец, хром, кремний, литий и т.д);

С добавлением интреметаллидов (соединений из нескольких металлов — магний+кремний, медь+магний, литий+магний, литий+медь и пр.).

В зависимости от выбранного метода дальнейшей металлообработки они делятся на:

Деформируемые сплавы алюминия (сплав не превращается в жидкость, а просто становится очень пластичным) — их удобно штамповать, подвергать ковке, прокату, экструзии, прессовке. Для достижения большей прочности некоторые из сплавов подвергают обработке при повышенных температурах (отжиг, закалка и старение), другие же обрабатывают под давлением. В результате получаются такие алюминиевые заготовки, как листы, профили, трубы, изделия более сложных форм и т.д.

Литейные сплавы алюминия (сплав проступает в производство в очень жидком состоянии, чтобы его легко можно налить в какую-нибудь форму) — такие сплавы легко резать, их них получаются литые фасонные (получаемые под давлением) и формовочные изделия.

Все сплавы на базе алюминия также можно разделить по степени прочности на:

Сверхпрочные (от 480 МПа) ;
— среднепрочные (от 300 — 480 МПа);
— малопрочные (до 300 МПа);

Отдельно классифицируются сплавы стойкие к воздействию высоких температур и коррозии.

Для того, чтобы изделия из сплавов было легко различить, каждому сплаву присваивается свой номер, состоящий из букв и цифр. Этот номер означает марку сплава алюминия. В начале наименования марки ставится буква или несколько букв, они указывают на состав сплава. Затем идет цифровой порядковый номер сплава. Буква в конце показывает, как обрабатывался сплав и в каком виде находится в данный момент.

Разберем принцип маркировки на примере сплава Д16П. Первая буква в марке «Д» означает дюралюминий, т.е сплав алюминия с медью и магнием. «16» — порядковый номер сплава. «П» — полунагартованный, то есть сплав прошел холодную обработку давлением до значения прочности вполовину меньше максимального.

Производство сплавов алюминия и их применение сильно разнятся в зависимости от вида и марки. Каждый сплав обладает своим собственным, весьма специфическим набором физико-механических свойств. Среди этих свойств есть такие, от которых зависит дальнейшая судьба сплава — то, куда он отправится с завода: на авиабазу, на стройку и в цех изготовления кухонной утвари. Эти свойства следующие: уровень прочности, коррозионная стойкость, плотность, пластичность, электро- и теплопроводность.

Основные свойства различных сплавов алюминия

Давайте рассмотрим основные сплавы на базе алюминия именно с точки зрения их приобретенных свойств.

Сплав меди и алюминия бываетнескольких видов — «чистый», в котором главными действующими элементами выступают Al и Cu, «медно-магниевый», в котором помимо меди и алюминия некоторую долю занимает магий и «медно-марганцевый» с легированием марганцем. Такие сплавы часто также называют дюралюминиям, их легко резать и сваривать «точечно».

Характерная черта дюралюминов в том, что для них берется алюминий с примесями железа и кремния. Как мы уже говорили, обычно присутствие этих элементов ухудшает качество сплава, но данный случай — исключение. Железо при повторной термической обработке сплава повышает его жаростойкость, а кремний выступает катализатором в процессе «старения» дюралюминов. В свою очередь магний и марганец в качестве легирующих элементов делают сплав намного прочнее.

Сплав алюминия и магния имеет разные показатели прочности и пластичности, в зависимости от количества магния. Чем магния меньше, тем меньше прочность изделия из такого сплава и тем выше стойкость к коррозии. Увеличение содержания магния на 1 % приводит к росту прочности до 30 000 Па. В среднем сплавы на основе магния и алюминия содержат до 6% первого. Почему не больше? Если магния в сплаве становится слишком много, изделие из него будет быстро покрываться ржавчиной, а кроме того такие изделия имеют нестабильную структуру, могут треснуть и т.д.

Термообработку сплавов магния с алюминием не проводят, так как она малоэффективна и не дает необходимого эффекта увлечения прочности.

Сплав алюминия с цинком и магнием считается наиболее прочным из всех алюминиевых сплавов, известных на сегодняшний день. Его прочность сравнима с титаном! Во время термообработки большая часть цинка растворяется, что и делает данный сплав таким прочным. Правда использовать в электрической промышленности изделия из таких сплавов невозможно, они не стойки к коррозии под напряжением. Чуть повысить коррозионную стойкость можно, если добавить в состав меди, но показатель все равно останется не удовлетворительным.

Сплав алюминия с кремнием — самый распространенный сплав в литейной промышленности. Поскольку кремний прекрасно растворяется в алюминии при нагреве, то образуемый расплавленный состав замечательным образом подходит для формовочного и фасонного литья. Готовые изделия относительно легко режутся и имеют высокую плотность.

Сплав алюминия с железом, как и сплавы алюминия с никелем практически не встречается «в живую». Железо добавляют исключительно как вспомогательный элемент для того, чтобы литейный сплав легко отлипал от стенок формы. Никель с свою очередь наиболее известен в производстве магнитов и присутствует в качестве одного из элементов в сплаве алюминий-никель-железо.

Сплав титана и алюминия, такжене встречается в чистом виде и используется только дляувеличения прочности изделий. С той же целью проводится сварка стали и сплавов алюминия.

), получивший промышленное применение, был разработан в 1909 А. Вильмом (Германия). С производством этого А. с. связан начальный. период развития металлического самолётостроения. В РСФСР в 1922 на заводе по обработке цветных металлов в посёлке Кольчугино Владимирской области было начато промышленное производство листового и сортового проката из отечественного А. с. кольчугалюминия (создатели Ю. Г. Музалевский и С. М. Воронов), отличавшегося по составу от немецкого дуралюминия. Большая роль, которую играют А. с. в авиастроении, определяется удачным сочетанием свойств: малой плотностью (2500-2900 кг/м3), высокими прочностью (до 500-600 МПа), коррозионной стойкостью, технологичностью при литье, обработке давлением, сварке и обработке резанием. Благодаря высокой удельной прочности начиная с 20 х гг. XX в. А. с. являются важнейшим конструкционным материалом в самолётостроении.
Основные легирующие компоненты А. с. — магний, цинк, кремний. В результате легирования алюминия одним, двумя и более элементами из числа перечисленных в различных сочетаниях, а также малыми добавками одного или нескольких переходных металлов — марганца, хрома, титана, циркония, никеля, железа, ванадия — получены и применяются в промышленности более 150 А. с. В 70 е гг. в число легирующих компонентов А. с. вошел также питий.
Все А. с. обычно разделяют на деформируемые, из которых изготовляют листы, плиты, профили и другие полуфабрикаты путём пластинчатой деформации литой заготовки, и литейные, которые предназначены исключительно для фасонного литья. Из деформируемых А. с. наибольшее значение имеют сплавы следующих систем.
Алюминий — магний с добавками марганца, титана, циркония (сплавы АМr2, АМr5, АМr6; цифра в марке показывает приблизительное содержание магния в процентах). Эти сплавы не упрочняются термообработкой; в отожжённом состоянии характеризуются умеренной прочностью (до 350 МПа для АМr6), высокой пластичностью, очень высокой коррозионной стойкостью, хорошей свариваемостью. Широко применяются для ответственных сварных конструкций.
Алюминий — медь — магний с добавками марганца — дуралюмины (Д1, Д16, Д18, В65, Д19, В17, ВАД1). Упрочняются термообработкой; подвергаются, как правило, закалке и естественному старению. Характеризуются сочетанием высокой статической прочности (до 450-500 МПа) при комнатной и повышенной (до 150-175°С) температуpax, высоких усталостной прочности и вязкости разрушения. Такое сочетание свойств определило широкое применение этих сплавов, особенно Д16 и Д16ч (чистого по примесям железа и кремния), в самолётостроении. Недостаток — низкая коррозионная стойкость; изделия требуют тщательной защиты от коррозии.
Алюминий — цинк — магний — медь с добавками марганца, хрома, циркония. Подвергаются закалке и искусственному старению. Сплавы имеют самую высокую из всех А. с. прочность (до 700 МПа для В96Ц). Однако при старении на максимальную прочность повышается чувствительность этих А. с. к коррозионному растрескиванию, снижаются пластичность и значения характеристик конструкционной прочности. Для этих сплавов внедрены режимы смягчающего старения (перестаривания), которые обеспечивают сочетание достаточно высокой прочности (420-470 МПа для В93 и В95) с удовлетворительными значениями сопротивления коррозионному растрескиванию и конструкционной прочности. Сплав В95, особенно его В95пч (повышения чистоты по примесям железа и кремния), относится к числу наиболее важных конструкционных материалов в самолётостроении.
Алюминий — магний — литий с добавками марганца и циркония. Подвергаются закалке и искусственному старению. Отличительная особенность — сочетание достаточно высокой прочности (420-450 МПа) с наименьшей для промышленных А. с. плотностью (2500 кг/м), высоким модулем упругости (75 ГПа) и удовлетворительной свариваемостью. Недостатки: пониженная пластичность, плохие технологические свойства.
Из литейных сплавов наибольшее значение имеют сплавы следующих систем.
Алюминий — кремний, (силумины) с добавками магния, меди, марганца, титана, никеля (АЛ2, АЛ4, АЛ9, АЛ5, АЛ34) — самые распространённые литейные А. с. При наличии магния и меди сплавы упрочняются термообработкой. Механические свойства колеблются в широких пределах (прочность от 15 МПа для АЛ2 до 350 МПа для АЛ34). Сплавы отличаются очень хорошими литейными свойствами, удовлетворительной коррозионной стойкостью и хорошей свариваемостью.
Алюминий — медь с добавками марганца, титана, никеля, циркония, церия, кадмия (АЛ7, АЛ19, АЛЗЗ, ВАЛ10). Упрочняются закалкой с последующим искусственным старением. К этой группе относятся самые прочные (до 500 МПа для ВАЛ10) и самые жаропрочные (90 МПа для АЛ33) литейные А. с. Недостатки: низкая коррозионная стойкость, пониженные литейные свойства.
Наряду с деформируемыми к литейными А. с. в авиастроении используются спечённые материалы — спечённая алюминевая пудра и спечённый алюминевый сплав.

Авиация: Энциклопедия. — М.: Большая Российская Энциклопедия . Главный редактор Г.П. Свищев . 1994 .

Смотреть что такое «Алюминиевые сплавы» в других словарях:

    Сплавы на основе алюминия. Первые А. с. получены в 50 х гг. 19 в.; они представляли собой сплав алюминия с кремнием и характеризовались невысокими прочностью и коррозионной стойкостью. Длительной время Si считали вредной примесью в А. с.… … Большая советская энциклопедия

    АЛЮМИНИЕВЫЕ СПЛАВЫ — сплавы на основе алюминия с добавками Cu, Mg, Zn, Si, Mn, Li, Cd, Zr, Cr и других элементов. Алюминиевые сплавы обладают высокой электро и теплопроводностью, хорошей коррозионной стойкостью. Применяются во многих отраслях машиностроения. По… … Металлургический словарь

    Имеют широкое распространение в военном кораблестроении в качестве материалов, применение которых способствует облегчению веса корпуса корабля. А. С. разделяются на литые и прокатные. Литые А. С. представляют сплав алюминия с медью (2 3 %),… … Морской словарь

    алюминиевые сплавы — сплавы на основе алюминия (Al) с добавками Сu, Mg, Zn, Si, Mn, Li, Cd, Zr, Cr и других элементов; характеризуется малой плотностью (от 2,5 до 2,9 г/см3), высокой удельной прочнению при достаточно удовлетворяющей пластичности,… … Энциклопедический словарь по металлургии

    алюминиевые сплавы Энциклопедия «Авиация»

    алюминиевые сплавы — алюминиевые сплавы. Первый А. с. (дуралюмин), получивший промышленное применение, был разработан в 1909 А. Вильмом (Германия). С производством этого А. с. связан начальный период развития металлического самолётостроения. В РСФСР в 1922 на заводе… … Энциклопедия «Авиация»

    Сплавы на основе алюминия с добавками меди, магния, цинка, кремния, марганца, лития, кадмия, циркония, хрома и др. элементов. А. с. обладают высокими механич. св вами и малой плотностью, высокой электрои теплопроводностью, хорошей корроз.… … Большой энциклопедический политехнический словарь

    АЛЮМИНИЕВЫЕ СПЛАВЫ — сплавы с предельным значением прочности на разрыв 190 МПа или более, измеренным при температуре 293К (20С) … Словарь понятий и терминов, сформулированных в нормативных документах российского законодательства

    При сплавлении алюминий соединяется со многими металлами; из получающихся таким образом сплавов заслуживает наибольшего внимания сплав меди с алюминием, алюминиевая бронза (см. это сл.) … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    спеченные алюминиевые сплавы (САС) — высокопрочные материалы, полученные спеканием из легированных Al порошков или гранул. В России наиболее широкое промышленное применение получили САС с высоким содержанием Si (заэвтектические силумины) марок САС 1 (25 30 … Энциклопедический словарь по металлургии Подробнее

Дисциплина: материаловедение

Тема: Цветные металлы и сплавы

Введение

Многие цветные металлы и их сплавы обладают рядом ценных свойств: хорошей пластичностью, вязкостью, высокой электро- и теплопроводностью, коррозионной стойкостью и другими достоинствами. Благодаря этим качествам цветные металлы и их сплавы занимают важное место среди конструкционных материалов.

Из цветных металлов в автомобилестроении в чистом виде и в виде сплавов широко используются алюминии, медь, свинец, олово, магний, цинк, титан.

1. Алюминий и его сплавы

Алюминий — металл серебристо-белого циста, характеризуется низкой плотностью 2,7 г/см 3 , высокой электропроводностью, температура плавления 660″С. Механические свойства алюминия невысокие, поэтому в чистом виде как конструкционный материал применяется ограниченно.

Для повышения физико-механических и технологических свойств алюминий легируют различными элементами (Си, Mg, Si, Zn). Железо и кремний являются постоянными примесями алюминия. Железо вызывает

снижение пластичности и электропроводности алюминия. Кремний, как и медь, магний, цинк, марганец, ипколь и хром, относится к легирующим добавкам, упрочняющим алюминий.

В зависимости от содержания постоянных примесей различают:

Алюминий особой чистоты марки А 999 (0,001 % примесей);

Алюминий высокой чистоты — А 935, А 99, А 97, Л 95 (0,005-0,5 % примесей);

Технический алюминий — А 85, А 8, А 7, А 5, А О (0,15-0,5 % примесей).

Алюминий выпускают в виде полуфабрикатов для дальнейшей переработки в изделия. Алюминий высокой чистоты применяют для изготовления токопроводящих и кабельных изделий.

И автомобилестроении широкое применение получили сшиты на основе алюминия. Они классифицируются: — по технологии изготовления; по степени упрочнения после термической обработки;

По эксплуатационным свойствам.

Деформируемые сплавы

К. неупрочияемым термической обработкой относятся сплавы;

алюминия с марганцем марки АМц;

алюминия с магнием, марок АМц АМгЗ, АМг5В;

АМгЗП, АМгб.

Эти сплавы обладают высокой пластичностью, коррозионной стойкостью, хорошо штампуются и свариваются, но имеют невысокую прочность. Из них изготовляют бензиновые баки, проволоку, заклепки, а также сварные резервуары для жидкостей и газов, детали вагонов.

В группе деформируемых алюминиевых сплавов, упрочняемых термической обработкой, различают сплавы:

Нормальной прочности;

Высокопрочные сплавы;

Жаропрочные сплавы;

Сплавы для ковки и штамповки.

Сплавы нормальной прочности. К ним относятся сплавы системы Алюминий + Медь + Магний (дюралимины), которые маркируются буквой «Д». Дюралюмины (Д1, Д16, Д!8) характеризуются высокой прочностью, достаточной твердостью и вязкостью. Для упрочнения сплавов применяют закалку с последующим охлаждением в воде. Закаленные дуралюмины подвергаются старению, что способствует увеличению их коррозионной стойкости.

Дюралимины широко используются в авиастроении: из сплава Д1 изготовляют лопасти винтов, из Д16 — несущие элементы фюзеляжей самолетов, сплав Д18 — один из основных заклепочных материалов.

Высокопрочные сплавы алюминия {В93, В95, В96) откосятся к системе Алюминий + Цинк + Магний + г Медь. В качестве легирующих добавок используют марганец и хром, которые увеличивают коррозионную стойкость и эффект старения сплава. Для достижения требуемых прочностных свойств сплавы закаливают с последующим старением.

Высокопрочные сплавы по своим прочностным показателям превосходят дуралюмины, однако менее пластичны и более чувствительны к концентраторам напряжений (надрезам). Из этих сплавов изготовляют высоконагруженные наружные конструкции в авиастроении — детали каркасов, шасси и обшивки.

Жаропрочные сплавы алюминия (АК 4-1, Д 20) имеют сложный химический состав, легированы железом, никелем, медью и другими элементами. Жаропрочность сплавам придает легирование, замедляющее диффузионные процессы.

Детали из жаропрочных сплавов используются после закалки и искусственного старения и могут эксплуатироваться при температуре до 300°С.

Сплавы для ковки и штамповки (АК 2 5 АК 4 Э АК 6, АК 8) относятся к системе Алюминий + Медь + Магний с добавками кремния. Сплавы применяют после закалки и старения для изготовления средне нагруженных деталей сложной формы (АК 6) и высоконагруженных штампованных деталей — поршни, лопасти винтов, крыльчатки насосов и др.

Литейные сплавы. Для изготовления деталей методом литья применяют алюминиевые сплавы систем Al-Si, Al-Cu, Al-Mg. Для улучшения механических свойств сплавы легируют титаном, бором, ванадием. Главным достоинством литейных сплавов является высокая жидкотекучесть, небольшая усадка, хорошие механические свойства.

Применяют следующие виды термической обработки литейных алюминиевых сплавов:

Искусственное старение: для улучшения прочности и обработки резанием;

Отжиг с охлаждением на воздухе: для снятия литейных и остаточных напряжений и повышения пластичности;

Закалка и естественное (или искусственное) старение: для повышения прочности;

Закалка и смягчающий отпуск: для повышения пластичности и стабильности размеров.

Сплавы алюминия с кремнием (силумины) получили наибольшее распространение среди алюминиевых литейных сплавов в силу своих высоких литейных свойств и хороших механических и технологических характеристик. Силумины (марок АЛ2, АЛ4, АЛ9) обладают высокой жидкотекучестью, хорошей герметичностью, достаточной прочностью, хорошо обрабатываются резанием, хорошо свариваются, сопротивляются коррозии и устойчивы к образованию горячих трещин.

Сплав АЛ2 применяется для изготовления тонкостенных деталей сложной формы при литье в землю: корпуса агрегатов и приборов.

Сплав АЛ4 — высоконагруженные детали ответственного назначения: корпуса компрессоров, блоки двигателей, поршни цилиндров и др.

Сплав АЛ9 — изготовление деталей средней нагруженно, но сложной конфигурации, а также для деталей, подвергающихся сварке.

Сплавы алюминия с магнием (магналины) — АЛ 8, АЛ13, АЛ27, АЛ29 обладают наиболее высокой коррозионной стойкостью и более высокими механическими свойствами после термической обработки по сравнению с другими алюминиевыми сплавами, но литейные свойства их низкие.

Сплавы АЛ 8 и АЛ 13 являются наиболее распространенными, из них изготовляют подверженные коррозионным воздействиям детали морских судов, а также детали, работающие при высоких температурах (головки цилиндров мощных двигателей воздушного

Ставы алюминия с медью — АЛ7, АЛ12, АЛ19 обладают невысокими литейными свойствами и пониженной коррозионной стойкостью, но высокими механическими свойствами.

Сплав АЛ7 применяют для изготовления отливок несложной формы, работающих-с большими напряжениями (головки цилиндров маломощных двигателей воздушного охлаждения).

Сплавы алюминия, меди и кремния — АЛЗ, АЛ4, АЛб характеризуются хорошими литейными свойствами, но коррозионная стойкость их невысокая.

Сплав АЛЗ широко применяют для изготовления отливок корпусов, арматуры и мелких деталей.

Сплав АЛ4 используется для отливок ответственных деталей, требующих повышенной теплоустойчивости и твердости.

Сплав АЛ6 применяют для отливок корпусов карбюраторов и арматуры бензиновых двигателей.

Сплавы алюминия, цинка и кремния — типичный представитель сплав АЛИ (цинковый силумин), обладающий высокими литейными свойствами, а для повышения механических свойств подвергающийся модифицированию. Используется для изготовления отливок сложной формы — картеров, блоков двигателей внутреннего сгорания.

Подшипниковые сплавы. Наибольшее применение из алюминиевых подшипниковых материалов получил сплав АСМ. По антифрикционным свойствам он близок к свинцовой бронзе, но превосходит ее по коррозионной стойкости и технологичности.

Сплав АСС-6-5 содержит в своем составе 5 % свинца, что придает ему высокие противозадирные свойства. Подшипники скольжения из сплавов АСМ и АСС-6-5 применяют взамен бронзовых в дизельных двигателях.

Из алюминиевых сплавов, легированных оловом, изготовляют тяжелонагруженные подшипники скольжения в автомобилестроении, а также в судовом и общем машиностроении.

Алюминиевые сплавы характеризуются более высоким коэффициентом теплового расширения, чем чугуны и стали. Поэтому подшипники из алюминиевых сплавов ограниченно применяются в практике машиностроения. Более широкое распространение получили биметаллические материалы, представляющие собой слой алюминиевого сплава, нанесенный на стальное основание. Такие биметаллы обеспечивают надежную работу узлов трения при больших нагрузках (20- 30 МПа) и высоких скоростях скольжения (до 20 м/с).

Спеченные металлы. Материалы на основе алюминия, полученные методами порошковой металлургии, обладают по сравнению с литейными сплавами более высокой прочностью, стабильностью свойств при повышенных температурах и коррозионной стойкостью.

Материалы из спеченных алюминиевых порошков (САП) состоят из мельчайших частичек алюминия и его оксида А1 2 О 3 . Порошок для спекания получают из технически чистого алюминия, распылением с последующим измельчением гранул в шаровых мельницах.

Технологический процесс получения изделий из САП состоит из операций изготовления заготовок и последующей механической обработки. Заготовки получают брикетированием (холодным или с подогревом) порошка с последующим спеканием при 590-620°С и давлениях 260-400 МПа.

По стойкости к воздействию температуры материалы из САП превосходят жаропрочный алюминиевый сплав ВД17.

Спеченные алюминиевые порошки (марок САП-1 — САП-4) применяют для изготовления деталей повышенной прочности и коррозионной стойкости, эксплуатируемых при рабочих температурах до 500°С.

Спеченные -алюминиевые сплавы (САС) получают из порошков алюминия с небольшим содержанием А1 2 О 3 , легированных железом, никелем, хромом, марганцем, медью и другими элементами.

Представителем этой группы материалов является САС-1, содержащей 25-30 % Si и 7 % Ni, применяемый взамен более тяжелых материалов в приборо- и машиностроении.

2. Медь и ее сплавы

Медь в чистом виде имеет красный цвет;.чем больше в ней примесей, тем грубее и темнее излом. Температура плавления меди 1083°С, плотность 8,92 г/см 3 .

Выпускают медь следующих марок: — катодная — МВ4к, МООк, МОку, М1к;

Бескислородная — МООб, МОб, М1б;

Катодная переплавленная — М1у;

Раскисленная — М1р, М2р, МЗр, МЗ. .

Примеси оказывают существенное влияние на физико-механические характеристики меди. По содержанию примесей различают марки меди:

МОО (99,99 % Си), МО (99,95 % Си), Ml (99,9 % Си), М2 (99,7 % Си), МЗ (99,50 % Си).

Главными достоинствами меди как машиностроительного материала являются высокие тепло- и электропроводность, пластичность, коррозионная стойкость в сочетании с достаточно высокими механическими свойствами. К недостаткам меди относят низкие литейные свойства и плохую обрабатываемость резанием.

Легирование меди осуществляется с целью придания сплаву требуемых механических, технологических, антифрикционных и других свойств. Химические элементы, используемые при легировании, обозначают в марках медных сплавов следующими индексами:

А — алюминий; Внм — вольфрам; Ви — висмут; В — ванадий; Гм — кадмий; Гл — галлий; Г — германий; Ж -железо; Зл — золото; К — кобальт; Кр — кремний; Мг — магний; Мц — марганец; М — медь; Мш — мышьяк; Н — никель; О — олово; С — свинец; Ст — селен; Ср — серебро; Су — сурьма; Ти — титан; Ф — фосфор; Ц — цикк.

Медные сплавы классифицируют:

по химическому составу на:

Медноникелевые сплавы; по технологическому назначению на:

Деформируемые;

Литейные;

по изменению прочности после термической обработки ъ&».

Упрочняемые;

Неупрочняемые.

Латуни — сплавы меди, в которых главным легирующим элементом является цинк. В зависимости от содержания легирующих компонентов различают:

Простыв (двойные) латуни;

Многокомпонентные (легированные) латуни. Простые латуни маркируют буквой «Л» и цифрами,

показывающими среднее содержание меди в сплаве. Например, сплав Л 90 — латунь, содержащая 90 % меди, остальное — цинк.

В марках легированных латуией группы букв и цифр, стоящих после- них, обозначают легирующие элементы и их содержание в процентах. Например, сплав ЛАН КМц 75-2-2,5-0,5-0,5 — латунь алюминиевоникель-

кремнистомарганцевая, содержащая 75 % меди, 2 % алюминия, 2,5 % никеля, 0,5 % кремния, 0,5 % марганца, остальное — цинк.

В зависимости от основного легирующего элемента различают алюминиевые, кремнистые, марганцевые, никелевые, оловянистые, свинцовые и другие латуни.

Алюминиевые латуни — ЛА 85-0,6, ЛА 77-2, ЛАМш 77-2-0,05 обладают повышенными механическими свойствами и коррозионной стойкостью.

Кремнистые латуни — ЛК 80-3, ЛКС 65-1,5-3 и другие отличаются высокой коррозионной стойкостью в ТМООферНШ условиях и в морской воде, а также высокими механическими свойствами.

Марганцевые латуни — ЛМц 58-2, ЛМцА 57-3-1, деформируемые в горячем и холодном состоянии, облада-нм iii.K-oKiiMii механическими свойствами, стойкие к коррозии и морской воде и перегретом паре.

Никелевые латуни — ЛН 65-5 и другие имеют высокие механические свойства, хорошо обрабатываются длплснпем в горячем и холодном состоянии.

Oловянистыe латуни- ЛО—90-1, ЛО 70-3, ЛО 62-1 отличаются повышенными антифрикционными свойствами и коррозионной стойкостью, хорошо обрабатываются.

Свинцовые латуни — ЛС 63-3, ЛС 74-3, ЛС 60-1 характеризуются повышенными антифрикционными свойствами и хорошо обрабатываются резанием. Свинец в этих сплавах присутствует в виде самостоятельной фазы, практически не изменяющей структуры сплава.

Бронзы — это сплавы меди с оловом и другими элементами (алюминий, кремний, марганец, свинец, бериллий). В зависимости от содержания основных компонентов, бронзы можно условно разделить на:

Оловянные, главным легирующим элементом которых является олово;

Безоловянные (специальные), не содержащие олова. Бронзы маркируют буквами «Бр», правее ставятся буквенные индексы- элементов, входящих в состав. Затем следуют цифры, обозначающие среднее содержание элементов в процентах (цифру, обозначающую содержание меди, в бронзе, не ставят). Например, сплав марки БрОЦС 5-5-5 означает, что бронза содержит олова, свинца и цинка по 5 %, остальное — медь (85 %).

Оловянные бронзы обладают высокими антифрикционными свойствами;-нечувствительны к перегреву, морозостойки, немагнитны.

Для улучшения качества оловянные бронзы легируют цинком, свинцом, никелем, фосфором и другими элементами. Легирование фосфором повышает механические, технологические, антифрикционные свойства оловянных бронз. Введение никеля способствует повышению механических и противокоррозионных свойств. При легировании свинцом увеличивается плотность бронз, улучшаются их антифрикционные свойства и обрабатываемость резанием, однако заметно снижаются механические свойства. Легирование цинком улучшает технологические свойства. Введение железа (до 0 5 09 %} способствует повышению механических свойств бронз, однако с увеличением степени легирования резко снижаются их коррозионная стойкость и технологические свойства.

В зависимости от технологии- переработки оловянные и специальные бронзы подразделяют на:

Деформируемые;

Литейные;

Специальные.

Деформируемые оловянные бронзы содержат до 8 % олова. Эти бронзы используют для изготовления пружин, мембран и других деформируемых деталей. Литейные бронзы содержат свыше 6 % олова, обладают высокими антифрикционными свойствами и достаточной прочностью; их используют для изготовления ответственных узлов трения (вкладыши подшипников скольжения).

Специальные бронзы включают в свой состав алюминий, никель, кремний, железо, бериллий, хром, свинец и другие элементы, В большинстве случаев название бронзы определяется основным легирующим компонентом.

Алюминиевые бронзы обладают высокими механическими, антифрикционными и противокоррозионными свойствами. Эти бронзы нашли применение для изготовления ответственных деталей машин, работающих при интенсивном изнашивании и повышенных температурах.

Кремнистые бронзы характеризуются высокими антифрикционными и упругими свойствами, коррозионной стойкостью. Дополнительное легирование кремнистых бронз другими элементами способствует улучшению эксплуатационных и технологических свойств бронз: цинк повышает их литейные свойства, марганец и никель улучшают коррозионную стойкость и прочность, свинец — обрабатываемость резанием и антифрикционные свойства. Кремнистые бронзы применяют взамен оловянных для изготовления антифрикционных деталей, пружин, мембран приборов и оборудования,

Свинцовые бронзы используют в парах трения, эксплуатируемых при высоких относительных скоростях перемещения деталей. Для повышения механических свойств и коррозионной стойкости свинцовые бронзы легируют никелем и оловом.

Бериллиевые бронзы отличаются высокими прочностными свойствами, износостойкостью и стойкостью к воздействию коррозионных сред. Они обеспечивают работоспособность изделий при повышенных температурах (до 500°С), хорошо обрабатываются резанием и свариваются. Бронзы этого типа используют для изготовления деталей ответственного назначения, эксплуатируемых при повышенных скоростях перемещения, нагрузках, температуре.

Сплавы меди с никелем подразделяют на конструкционные и электротехнические

Кушали (медь-никель-алюминий) содержат 6-13 % Ni, 1,5-3 % А1, остальное — медь. Они подвергаются термической обработке (закалка-старение). Куниали служат для изготовления деталей повышенной прочности, пружин и ряда электротехнических изделий.

Нейзильберы (медь-никель-цинк) содержат 15 % Ni, 20 % Sn , остальное — медь. Они имеют белый цвет, близкий к цвету серебра. Нейзильберы хорошо сопротивляются атмосферной коррозии. Их применяют в приборостроении и производстве часов.

Мелькиоры (медь-никель и небольшие добавки железа и марганца до 1 %) обладают высокой коррозионной стойкостью. Их применяют для изготовления теплообменных аппаратов, штампованных и чеканных изделий,

Копелъ (медь-никель-марганец) содержат 43 % Ni, 0,5 Мп, остальное — медь. Это специальный сплав с высоким удельным электросопротивлением, используемый для изготовления электронагревательных элементов.

На сегодняшний день практическое применение нашли почти все известные человеку металлы и их сплавы. У каждого из них есть свои специфические особенности, которые и определяют сферу их использования в тех или иных отраслях промышленности. Наибольшее распространение получили железо и всевозможные соединения на его основе, а также алюминий и его сплавы. Это можно объяснить, прежде всего, большими природными запасами, а также прекрасными химическими, физическими и механическими характеристиками.

Немного истории

Согласно древней легенде, описанной в трактате «Естественная история» Гая Плиния Старшего, составленной примерно в 77 году н.э., однажды к императору Рима Тиберию подошел незнакомый мастер и сделал ему подарок в виде чаши из серебристого и очень легкого металла. Когда Тиберий спросил его, из чего он ее сделал, тот ответил, что из глины. Удивившись, император приказал умертвить невинного ремесленника и уничтожить его мастерскую, чтобы это изобретение не привело к обесцениванию металлов римской казны. Жаль, что он в то время не смог оценить все перспективы открытия, ведь алюминий и его сплавы в будущем совершили прямо-таки настоящий прорыв.

Почему алюминий и его сплавы так популярны?

Содержание алюминия в земной коре составляет примерно 8,8%, и потому он лидирует в перечне наиболее распространенных металлов. В число его достоинств входит малая плотность (2,7 г/см3), прекрасная коррозийная стойкость, технологичность, хорошая электро- и теплопроводность, довольно высокие прочностные характеристики. Алюминий и его сплавы широко используются в авиации, судостроении, железнодорожном транспорте, автомобилестроении, строительстве, химической и и т.д. характеризуются высокой скоростью обработки. Все это дает отличную возможность применять их почти в любом виде производства.

Основные сплавы на основе алюминия

Соединяя алюминий с легирующими добавками, можно добиться большей прочности и улучшить прочие свойства этого металла. В качестве добавок чаще всего применяют кремний, медь, марганец, цинк и магний. Рассмотрим основные сплавы.

или просто дюраль)

Название этого соединения произошло от слова Дюрен — именно так назывался немецкий город, в котором в 1911г. начали производить этот сплав в промышленных масштабах. Получают его добавлением к алюминию меди (2,2 — 5,2 %), магния (0,2 — 2,7%) и марганца (0,2 — 0,1%). После термообработки металл становится очень прочным (статическая прочность достигает 450-500 МПа). Для того чтобы повысить антикоррозийную стойкость, его нередко плакируют алюминием. Используют в качестве в транспортном и авиационном машиностроении.

Магналии

Это различные сплавы алюминия с магнием и прочими элементами (содержание магния — 1-13%). Для них характерна высокая пластичность, хорошая свариваемость и коррозийная стойкость. Используются для изготовления фасонных отливок, проволоки, листов, заклепок и т.д.

Силумин

Это соединение получают, соединяя алюминий с кремнием (содержание кремния — 4-13%). Порой в него добавляют и другие добавки: Be, Ti, Zn, Mg, Mn, Cu. Данный сплав применяется для производства деталей сложной конструкции, в основном в авиа- и автостроении.

Алюминий и его сплавы еще долго будут служить на благо человечества. Доказательство тому новое изобретение — пеноалюминий или, как его еще называют, «металлический поролон». Многие эксперты считают, что у пористого алюминия есть отличные перспективы.

В современном производстве металлических изделий использование того или иного металла в чистом виде встречается нечасто — в основном, для этих целей применяются различные его славы. Дело в том, что «чистые» металлы далеко не всегда обладают всем необходимым набором характеристик, требующихся при изготовлении металлоконструкций и других металлических изделий. И необходимые качества им как раз и придают различные добавки, «прибавляемые» к металлу в процессе плавки.

Чаще всего в производстве применяются сплавы черных металлов, использование сплавов цветных металлов — более редкий вариант, так как стоимость таких сплавов довольно высока, а производство сплавов металлов отличается гораздо более мелкими масштабами. Как правило, сплавы цветных металлов берут в тех случаях, когда от готового изделия требуются следующие качества:

  • 100-процентная устойчивость к коррозии;
  • высокая степень электропроводности;
  • высокая степень теплопроводности;
  • отличные эстетические характеристики готового изделия;
  • в отдельных случаях, когда речь идет о сплавах, где основным элементом является алюминий — легкость готового изделия.

Вообще, что касается наиболее распространенных сплавов цветных металлов, то чаще всего в промышленности и строительстве используются сплавы на основе меди или алюминия.

Медные сплавы.

Медь — это металл, который использовался людьми еще в древние времена. Дело в том, что сама медь в чистом виде встречается в природе, и ее залежи расположены довольно неглубоко, а производство сплавов металлов на основе меди не требует применения сложных технологий.

Сегодня в промышленности в большинстве случаев применяется не чистая медь, а ее сплавы — латунь и бронза.

Латунь

Латунь — это соединение в процессе плавки в промышленных масштабах промышленной частоты меди и цинка, причем количество цинка в зависимости от требуемой прочности конечного изделия может меняться в пределах 10-40%.

В процессе производства в печь сначала вводят и расплавляют медь. Цинк и свинец предварительно разогревают до температуры в 100 градусов, а в расплавленную медь вводят в конце процесса изготовления латуни. Весь процесс производится с помощью древесного угля, укрывающего расплавленный металл и вводимого в печь с начальной порцией меди. А если речь идет о производстве кремнистой латуни, то вместо древесного угля используют специальные флюсы. Добавление цинка в процессе производства сплава позволяет придать меди более высокую прочность и сделать ее более твердой.

Латунные изделия достаточно часто можно встретить в качестве элементов декорирования дома — например, из латуни делают перила лестниц или накладки на дверные полотна. Также латунь применяется и в мебельной промышленности — например, для изготовления декоративных вставок на фасадах шкафов.


Бронза

Такой материал, как бронза, появляется в процессе добавления к расплавленной меди олова (его количество может составлять до 10%), свинца и алюминия. В зависимости от типа добавляемого к меди металла, изменяется и процесс производства бронзы, и оборудование, которое для этого требуется. Например, для изготовления бронзы из сплава меди и олова применяются индукционные электрические печи, а для сплава меди с алюминием применяются дуговые электропечи, а также коксовые или нефтяные печи. Различные составляющие части сплава помещаются в печь в определенном порядке, установленном технологией производства. Получаемый сплав отличается легкостью обработки, а также 100-процентной устойчивостью к коррозии.

Чаще всего бронза применяется для изготовления различных декоративных, а также технических изделий.

Алюминиевые сплавы.

Алюминий — это металл серебристого цвета. К главным достоинствам алюминия, определяющим сферу его применения, относятся:

  • легкость;
  • высокие показатели по электро- и теплопроводности;
  • устойчивость к появлению коррозии, благодаря защитной пленке, которая образуется на поверхности алюминия, находящегося на открытом воздухе.

Но при всех своих «плюсах» чистый алюминий имеет и определенные «минусы»:

  • низкая температура плавления, затрудняющая сварку алюминиевых деталей;
  • недостаточная прочность;
  • мягкость.

Справиться со всеми этими недостатками помогает производство и применения в промышленности и строительстве сплавов алюминия с магнием, кремнием, марганцем, медью и другими металлами.

Все алюминиевые сплавы, в зависимости от того, какой способ производства при их изготовлении применялся, можно разделить на два типа:

  • деформируемые;
  • литейные.

Деформируемые сплавы отличаются высокой пластичностью, а основной характеристикой литейных сплавов является их текучесть. Для того, чтобы придать алюминиевому сплаву ту или иную характеристику, в него добавляют различные легирующие вещества.

Для производства сплавов алюминия применяют специальные отражательные печи. Как правило, в промышленности процесс производится одновременно с применением двух печей — в одной из них готовится сам сплав, который поступает во вторую печь, «отвечающую» за разливку сплава, ведущуюся без перерыва. Ингредиенты сплава, загружаемые в первую печь, могут быть как в твердом, так и в жидком состоянии. Вид получаемой продукции зависит от того, о каком именно типе сплава идет речь. Если это литейный сплав, то он имеет форму чушек, а деформируемым сплавам придают вид слитков, что более удобно для их дальнейшей обработки на прокатном стане или с помощью пресса.

Профессиональные мужские инструменты
Добавить комментарий