Существует довольно много различных способов, применяемых для изменения размеров, формы, качества металла. Некоторые позволяют существенно повысить качество поверхности и ускорить процесс изменения размеров. Электроэрозионная обработка – способ изменения формы, размеров, показателя шероховатости, свойств поверхности, который заключается в воздействии электрического разряда на заготовку при использовании электрода-инструмента.
- Основы технологии
- Классификация методов
- Характеристики электрического разряда
- Преимущества рассматриваемого метода
- Недостатки
- ПРИМЕРЫ НАШИХ РАБОТ
- Электроэрозионная обработка
- Диэлектрик в электроэрозионной обработке
- О сути процесса:
- Неблизнецы-братья
- Проволочная электроэрозионная резка
- Функции диэлектрика:
- Искровые промежутки
- Износ электрода
- Копировально-прошивочная обработка
- Принцип работы
- Виды используемого оборудования
- Преимущества электроэрозионной обработки
- Технология обработки
- Станочное оборудование
- Производственные возможности по электроэрозионной обработке
- Границы применения электроэрозионной обработки
- Электроэрозионная резка металла
- Проволочно-вырезные станки
- Электроэрозионные прошивные станки
- Самодельные электроэрозионные станки
Основы технологии
К особенностям, которыми обладает электроэрозионная обработка, можно отнести нижеприведенные моменты:
- В качестве одного из электродов выступает заготовка, другого – электрод-инструмент.
- Подача разряда проводится периодически, в виде коротких импульсов, так как подобное влияние позволяет восстановить электрическую прочность среды между электродами.
- Униполярные импульсы подаются для того, чтобы уменьшить износ используемого электрода-инструмента.
- Важным моментом можно назвать то, сколько длится импульс. При малой продолжительности подаваемого импульса существенно повышается износ анода. Однако при большой длительности импульса существенно повышается износ катода.
Зачастую на практике используется способ подключения к положительному и отрицательному плюсу генератора переменного тока.
Классификация методов
Существуют следующие способы электроэрозионной обработки заготовок:
- Комбинированный метод – предусматривает использование сразу нескольких методов воздействия. Некоторое оборудование позволяет комбинировать механическую и электроэрозионную обработку. Этот метод довольно популярен в последнее время, так как дает возможность достигнуть высоких результатов.
- ЭЭХО или электроэрозионно-химическое шлифование – метод воздействия, который предусматривает комбинирование метода подачи тока и электролита. Метод довольно популярный, позволяет повысить качество поверхности и изменить форму заготовки.
- Абразивная с подачей электрического тока позволяет воздействовать на заготовку для изменения шероховатости. В данном случае оборудование предназначено исключительно для получения определенной шероховатости.
- Анодно-механическое воздействие определено тем, что процесс происходит в жидкой среде. В данном случае после подачи тока на поверхность появляется пленка, которая в последствие удаляется механическим методом.
- Электроэрозионное упрочнение путем обработки электричеством характеризуется тем, что используемое оборудование позволяет существенно повысить прочность поверхностного слоя. Процедура не занимает много времени, проста в исполнении.
- Объемное копирование – оборудование в данном случае имеет инструмент определенной формы и размеров, которые отражаются на заготовке при подаче тока.
- Прошивание – способ электрического воздействия, при котором образуется отверстие определенного диаметра и формы.
- Маркирование проводится путем нанесения определенной информации, которая остается на долгое время. Данная маркировка проста в исполнении, менее затратная.
- Электроэрозионная резка проводится довольно часто. Она отличается тем, что можно получить высокоточные размеры путем резания этим методом.
- Шлифование также проводится довольно часто.
Вышеприведенные моменты определяют то, что электроэрозионная обработка металлов позволяет получить заготовку с наиболее подходящими показателями.
Характеристики электрического разряда
От того, как подается электрический разряд, зависит многое. Электроискровая обработка может характеризоваться нижеприведенными моментами:
- Первый этап заключался в электрическом пробое. При нем происходит искровой разряд.
- Следующим этапом становится возникновение дугового разряд, который оказывает более серьезное воздействие.
Вышеприведенные моменты определяют то, что многие генераторы способны выдавать многоступенчатый разряд. Подобный подход позволяет существенно повысить качество получаемого результата.
Длительность и частота импульса определяется тем, какое воздействие следует оказать на поверхность. Длительность одного импульса может находится в пределе 0,1 … 10 −7 секунды. Также важным показателем можно назвать частоты в диапазоне от 5 кГц до 0,5 МГц. Следует отметить, что электроэрозия позволяет получать качество поверхности с наименьшей шероховатостью: чем меньше длительность импульса, тем меньше показатель. Показатель площади заготовки определяет то, какая сила тока используется. К примеру, при площади 3 600 квадратных миллиметров показатель силы тока составляет 100 А.
Преимущества рассматриваемого метода
К достоинствам рассматриваемого метода можно отнести нижеприведенные моменты:
- Используемый инструмент, который выступает в качестве электрода, может иметь произвольную форму. Этот момент определяет то, что можно провести образование закрытых каналов. Механическое снятие металла имеет много ограничений в плане того, какие можно получить формы.
- Заготовка может быть представлена любым токопроводящим материалом. Однако отметим, что использовать материалы с высоким сопротивлением нельзя. Высокий показатель сопротивления приводит к нагреву поверхности.
- Рассматриваемый процесс полностью автоматизирована. Этот момент определяет то, что вероятность возникновения человеческого фактора, приводящего к браку, исключается.
- Точность получаемых размеров и степени шероховатости очень велика. При этом важно отметить, что можно получить высокую точность формы, размеров, шероховатости и других показателей.
Электроэрозионная обработка – современный метод производства, который с каждым годом пользуется все большей популярностью. В последнее время создается довольно много оборудования, которое может оказывать действие электрического разряда.
Недостатки
Есть определенные недостатки, которые определяют отсутствие возможности повсеместного использования электроэрозионной обработки. К основным недостаткам можно отнести?
- Невысокая производительность. Для изменения формы или размеров, качества поверхности требуется довольно продолжительное воздействие электрического разряда. Большая часть оборудования имеет следующий показатель производительности: 10 миллиметров за одну минуту.
- Высокое энергопотребление определяет то, что стоимость получения деталей очень высока. Электричество – самый дорогой источник энергии, который используется во многих сферах промышленности.
- Сложность процесса определяет то, что управлять оборудованием может исключительно профессионал.
- Есть определенные требования к тому, где устанавливается техника. Стоит учитывать то, что технология предусматривает подачу тока с высокой силой тока и напряжением.
В заключение отметим, что электроэрозионная обработка в последнее время используется в различных отраслях промышленности для изменения эксплуатационных качеств материала. При определенном воздействии можно повысить сопротивление поверхности к образованию царапин, появлению отпечатков пальцев и так далее.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .
Электроэрозионная обработка (CNC Wire Cut EDM Machine) металлов, сплавов, деталей, узлов, инструментов. Предоставляет полный комплекс услуг для производства и обработки готового изделия, а так же выполняем заказы по электроэрозионной резке металла.
Наше оборудование позволяет выполнять электроэрозионную обработку токопроводящих материалов и изготавливать детали различной формы и сложности.
- обработка стали любой твердости;
- обработка титана;
- твердых сплавов;
- жаропрочных сплавов;
- обработка магнитов;
- прошивка отверстий, полостей, углублений;
- получение методом копирования профилированных поверхностей, отверстий любого сечения;
- нанесение надписей и маркировки на металлах;
- изготовление прототипов статоров электродвигателей из магнитной стали;
- изготовление планетарных редукторов.
* – При больших объёмах реза или низкой точности – цена договорная
ПРИМЕРЫ НАШИХ РАБОТ
Электроэрозионная обработка
Сущностью процесса электроэрозионной резки является воздействие на деталь искровых разрядов, образующихся вследствие протекания импульсного тока с частотой в районе 240 кГц между электродом-проволокой и деталью, находящихся в непосредственной близости друг от друга в среде жидкого диэлектрика. В результате этих разрядов из материала детали выбиваются микрочастицы, которые выносятся из межэлектродного зазора (GAP) струей диэлектрика. Кроме этого, диэлектрик играет роль катализатора процесса распада, так как при высочайшей температуре разряда диэлектрик в зоне эрозии превращается в пар. Происходит дополнительный микровзрыв пара, который не может сразу выйти из межэлектродного зазора.
За последние годы электроэрозионная обработка не только окончательно закрепила свои позиции в современном инструментальном производстве, но и продолжает развиваться быстрыми темпами в направлении улучшения качественных показателей и предложения новых конструктивных решений.
Открытие формообразующего воздействия электрической эрозии на токопроводящие материалы состоялось в 1943 году и принадлежит нашим соотечественникам – супругам Б. и Н. Лазаренко. Когда повсюду в мире в 50-х годах лучшие умы всерьез взялись за эту технологию, чья-то советская руководящая воля свернула перспективные разработки и ввергла нас в отставание на многие десятки лет в области электроэрозионной обработки. Ну что же, как это не горько, поговорим об успехах других.
Диэлектрик в электроэрозионной обработке
Советские исследователи, супруги Лазаренко, которые впервые и открыли возможность использования явления электрической эрозии для обработки токопроводящих материалов, в качестве диэлектрика вначале использовали окружающий воздух. Однако скоро выяснилось, что производные минеральных масел имеют в этом плане несравнимые преимущества: сила разряда – больше, можно работать с меньшими искровыми промежутками, что улучшает точность операции. Новый материал диэлектрика также позволил увеличить частоту разрядов и лучше вымывать частички эродированного металла.
С 1960 года на рынок стали выходить химические компании, предлагающие специальные составы для использования в электроэрозионных установках.
О сути процесса:
Электроды – инструмент и заготовка – закреплены оснасткой станка и не соприкасаются друг с другом. Генератор электрических импульсов задает периодичность и напряженность электрического поля вокруг электродов. Во время процесса электроискрового воздействия серия периодических блуждающих электрических разрядов снимает тончайший слой материала с заготовки.
В точке, где напряженность электрического поля достигает максимума, происходит электрический разряд – молния в “микроатюре”. Под действием электрического поля электроны и свободные положительные ионы разгоняются до высоких скоростей и моментально образуют ионизационный туннель, обладающий электрической проводимостью. Возникает электроток, и между электродом и заготовкой образуется искровой разряд, приводящий к столкновениям элементарных частиц. Во время этого процесса образуется газовый пузырек, давление которого непрерывно нарастает до образования плазменной зоны. Плазменная зона быстро достигает сверхвысоких температур – от 8000 до 12000°С – благодаря нарастающему числу столкновений элементарных частиц. Этот процесс приводит к моментальному плавлению микрослоев вещества у электрода. При исчезновении электрического поля внезапное снижение температуры приводит к взрыву плазменного пузырька, что сопровождается отрывом части материала с заготовки, и к образованию на этом месте микроскопического кратера. Эродированный материал затем формируется заново в виде маленьких сфер, которые вымываются жидкостью-диэлектриком. При очень коротком разрядном импульсе в движение приводится больше отрицательно заряженных частиц, нежели положительно заряженных. Чем больше частиц определенного заряда движутся к электроду, тем больше тепла вырабатывается на его поверхности. Из-за большего размера положительные частицы способствуют выработке большего тепла при тех же скоростях бомбардировки электрода-цели. Чтобы минимизировать снятие материала заготовки или износ инструмента, полярность выбирается таким образом, чтобы как можно больше тепла высвобождалось со стороны заготовки до завершения разряда. Для чего при коротких разрядах электрод-инструмент соединяется с отрицательной клеммой и, таким образом, имеет отрицательную полярность. При длительных разрядах, наоборот, электрод-инструмент подключается к положительному полюсу. На протяженность импульса, при которой должна поменяться полярность на заготовке и электроде-инструменте. влияет целый ряд факторов, в большей степени зависящих от физических параметров инструмента и свойств материала электрода. Когда идет обработка стали медным электродом, продолжительность периодичного генерируемого импульса составляет порядка 8 микросекунд.
Неблизнецы-братья
Технология электроэрозионной обработки продолжает развиваться по двум основным направлениям: проволочная электроэрозионная резка (wire electric discharge machining) и копировально-прошивная электроэрозионная обработка (ram (die sinking) electric discharge machining).
Проволочная электроэрозионная резка
Проволочная резка начала свое развитие с чистого листа в начале 70-х годов. Глобальное совершенствование процесса пришлось на период с середины 80-х до середины 90-х годов. Прогресс обозначился по шести ключевым направлениям известного соотношения цена-качество:
Функции диэлектрика:
Электроизолирующая . Диэлектрик должен разделять заготовку и электрод. Искровой разряд должен происходить в максимально узком промежутке между заготовкой и электродом, что позволяет сделать процесс производительным и точным.
Ионизационная . За очень короткое время необходимо создать все условия для формирования электрического поля. После импульса зона разряда должна быть очень быстро деионизирована для возможности повторного разряда. Диэлектрик должен способствовать максимальному сужению искровой зоны, чтобы добиться высокой плотности энергии в этой зоне.
Охлаждающая . Искровой разряд имеет сверхвысокую температуру, поэтому диэлектрик должен остудить и электрод, и заготовку. Также важно увести металлические газы, образующиеся в процессе электроэрозии.
Промывочная . Чтобы избежать электрического пробоя диэлектрик должен эффективно удалять эродированные крупицы металла.
Скорость . Номинальная максимальная скорость резки на сегодняшний день превышает 300 кв. мм/мин, (в лабораторных условиях реализована скорость вырезки 600 кв. мм/мин.). Конечно, средняя скорость резки в реальных производственных условиях ниже номинальных величин, однако и это впечатляет по сравнению с показателями четвертьвековой давности (25-30 кв. мм/мин.). Появление новых сплавов для проволоки может отодвинуть и эти рубежи.
Размер заготовки . Максимальные размеры заготовок, пригодных для обработки на вырезных станках, по осям Х и V достигают метра и даже больше (1300-1380 мм – по оси X). Однако особенно сильно за последние десятилетия вырос габаритный размер заготовки по оси 2, который сейчас доходит до 400 мм. До этой же отметки поднялись и координатные перемещения по оси 2. Всего этого удалось добиться благодаря новым конструктивным решениям, объединившим принципы неподвижности заготовки и более точной и жесткой реализации осевых движений.
Угол конусной резки . В современных установках достигаются углы вырезки конических отверстий до 30 градусов для заготовок толщиной до 400 мм. Более того, некоторые фирмы в качестве опциона предлагают установки с возможностью достижения конусности до 45 градусов. Такие возможности позволили с начала 90-х годов значительно расширить область применения электроэрозионной резки. Так, если раньше головки для экструзионных установок собирались из набора отдельно обработанных тонких пластин, то новые возможности электроэрозионных станков позволили изготавливать экструзионные головки из одной заготовки и за одну операцию. За счет этого удалось значительно снизить объем скрапа и увеличить производительность экструзионного процесса.
Цена . За более чем четверть века непрерывных работ на порядок улучшились характеристики вырезных станков, в то время как за этот же период оборудование подешевело приблизительно на 75% (с учетом фактора инфляции). Целый ряд обстоятельств способствовал снижению цены. Электронная начинка оборудования вобрала много решений, пришедших из компьютерной индустрии, которые уже тогда отличались прекрасным соотношением цена-качество – возросшая вычислительная мощь за меньшие деньги. Сильно увеличился объем производства электроэрозионного оборудования, что повысило эффективность таких производств. Кроме того, все новые и новые технические решения также способствовали планомерному снижению цен на установки.
Точность . Еще в 70-х и начале 80-х годов оператору станка приходилось вначале делать пробный рез образца и затем корректировать первоначальные настройки, прежде чем выйти на точные геометрические размеры изделия.
Искровые промежутки
Искровой промежуток разделяет заготовку и электрод. Даже при малой глубине обработки различают два типа промежутка: фронтальный и боковой. Фронтальный задается системой управления, в то время как боковой искровой промежуток зависит от продолжительности и высоты разрядного импульса, сочетания материалов, напряжения холостого хода и других заданных параметров.
Блок питания является важнейшим элементом электроэрозионной установки. Он преобразует переменный ток из силовой сети в прямоугольные импульсы определенной полярности. Размер импульсов и интервал между ними задается системой управления в соответствии с выполняемым режимом обработки. Сила тока разряда пропорциональна высоте импульса. Интервал между импульсами соответствует моменту отсутствия искрового разряда, а протяженность импульса соответствует длительности искрового разряда. Обе эти величины составляют тысячные или даже миллионные доли секунды.
Интервал между отдельными импульсами (длительность отсутствия электрического тока) также задается системой управления. Интервал измеряется в процентном отношении собственной длительности к длительности импульса.
Теперь все эти мытарства остались в прошлом и сегодняшняя точность станков достигает 0,001 мм.
Вовлечение современных информационных технологий (САD/САМ – системы) в технологический процесс также позволило увеличить точность обработки – новые установки со всем комплексом современного оснащения гарантировали повторение заложенной в программе геометрии с большой степенью точности.
Как уже отмечалось, современные модели станков на 75% дешевле своих ранних предшественников, в то же самое время они в 3-5 раз точнее.
Длительная работа без вмешательства человека. В 70-х годах электроэрозионные установки могли работать целыми часами без вмешательства оператора – тогда скорости резки были слишком малыми. В современных условиях, когда значительно возросли скорости обработки, практически полностью безлюдное производство обеспечивается за счет использования продвинутых систем автоматизации: устройства автоматической заправки проволоки, поиска отверстия, предотвращения обрыва проволоки, системы автоматизированной загрузки заготовок, удаления перемычек и т. д.
Износ электрода
Эрозия при малом токе снимает мало материала заготовки, тогда как большой ток позволяет добиться больших скоростей снятия материала.
Однако и износ инструмента возрастает, особенно при обработке стали медными электродами. Графитовые электроды ведут себя иначе – износ до определенного момента растет, затем более или менее стабилизируется.
Короткие импульсы также приводят к ускоренному износу электрода. И наоборот, износ идет значительно медленней при длинных импульсах. На практике, при черновой обработке стали медным и графитовым инструментом оптимальная величина длительности импульса лежит на отрезке, на одном конце которого длительность импульса с максимальным съемом, а на другом – длительность импульса с минимальной интенсивностью износа инструмента.
Копировально-прошивочная обработка
Впервые об электроэрозионных станках стало известно с появлением в 1955 году первой копировально-прошивочной установки с ручным управлением. Возможности станков были значительно улучшены к концу 70-х годов, когда применение спутников позволило значительно уменьшить время цикла и число используемых электродов. Примерно в 1980 году была представлена первая модель станка с СNС-управлением. К этому времени процесс копировальной прошивки уже успел претерпеть все возможные усовершенствования, и характеристики прошивочных СNС-станков улучшались более медленными темпами по сравнению с более “молодыми” проволочно-вырезными станками. Наиважнейшим усовершенствованием по сравнению с ранними станками с ручным управлением было не столько само время цикла, сколько число рабочих часов, необходимых для образования заданной полости в материале.
Ранее было замечено, что в случае проволочной резки увеличение производительности и снижение производственных затрат в большей степени достигалось благодаря скорости резания. Что касается электроэрозионной прошивки, то соответствующие улучшения были достигнуты благодаря существенному увеличению количества часов, которые способен работать СNС-станок в течение дня. Обе технологии много выиграли от снижения нормочасов на каждой детали. Переход с ручного управления на числовое программное позволил станкам работать практически всю первую смену, интенсивно во вторую и третью в безлюдном режиме. Если для станка с ручным управлением наиболее типичной является работа в течение 6 часов, то в случае станка с СNС-управлением реально выполнимой задачей может быть 16 часов. Хотя на многих производствах достигаются и более высокие показатели.
Цена. Ведущие производители прошивочных станков предлагают сегодня СNС-станки (без системы автоматической смены инструмента и оси С) примерно по той же цене, по которой в середине 70-х продавались станки с ручным управлением (инфляция учитывается). Даже если добавить стоимость необходимых опций, то скорректированная цена такого нового станка примерно будет равна цене станка 70-х с ручным управлением, который оснащен спутником. Любое повышение цены будет существенно перевешиваться снижением времени цикла, нормочасов и увеличением времени, которое оборудование реально работает в течение суток.
Точность обработки. Учитывая характер процесса формообразования при электроэрозионной прошивке, точность обработки в большей степени будет зависеть от качества и точности изготовления электрода. Графит – более дешевый и удобнообрабатываемый материал – в сочетании с современными технологиями высокоскоростной фрезерной обработки позволяет получать электроды большой сложности и высокой точности.
Определенные успехи были достигнуты и в отношении плоскостности обработанных поверхностей. Например, суммарное отклонение для прямоугольной полости 150х200 мм, полученной на современном станке, составляет всего 0,008 мм.
Электроэрозионную обработку металла достаточно широко применяют для изменения размеров металлических деталей, не нарушая их физических свойств. Такой процесс осуществляется при помощи специального оборудования и требует хорошего знания необходимых технологий.
Кроме того, такая обработка дает возможность получить отверстия нужной формы и конфигурации, при необходимости – сделать фасонные полости, и изготовить профильные пазы и канавки на заготовках, созданных на основе твердых сплавов.
Такое электроэрозионное воздействие делает различные инструменты гораздо прочнее, обеспечивает производство качественного электропечатания , высокоточного шлифования, осуществлять резку деталей и многое другое. Выполняется обработка при полном соблюдении всех необходимых правил техники безопасности.
Принцип работы
Перед тем как приступить к выполнению этого вида обработки, необходимо вначале правильно собрать все требуемые элементы в единую цепь и предварительно подготовить детали , которые понадобятся для работы. На сегодняшний день промышленные предприятия используют разные виды электроэрозионного воздействия.
Нужно отметить, что важнейшим элементом в схеме, необходимой для выполнения электроэрозионной обработки , является электрод, который должен иметь достаточную эрозионную стойкость. В этом случае в качестве электрода можно использовать такие металлы, как:
- графит;
- медь;
- вольфрам;
- алюминий;
- латунь.
С точки зрения химии, такой метод термического воздействия на металл способствует разрушению его кристаллической решетки, благодаря чему высвобождаются некоторые категории ионов.
Довольно часто, чтобы обработать металл, применяют электроискровой и электроимпульсный методы . Также встречаются электроконтактный и анодно-механический способы.
Если для деталей из металла потребуется черновая обработка, то обычно применяют электроимпульсную схему. При этом во время работ температура вырабатываемых импульсов может достигать 5 000 градусов. Это увеличивает такой параметр, как производительность.
Если требуется обработать заготовки с небольшими размерами и габаритами , то в основном используется электроискровой способ.
Электроконтактная обработка применяется при работе со сплавами, осуществляемой в жидкой среде. Необходимо отметить, что приобретенные свойства металла после такого воздействия могут по-разному отразиться на эксплуатационных характеристиках деталей.
Практически всегда из-за воздействия токов и высоких температур у обрабатываемых деталей очень сильно повышается прочность, а в самой структуре сохраняется мягкость.
Виды используемого оборудования
Известно, что существуют разнообразные способы и методы обработки поверхностей металлов, и такой вид считается более эффективным, чем механический. В основном это связано с тем, что применяемый для проведения механической обработки инструмент стоит значительно дороже, чем проволока, используемая при электроэрозионной обработке.
Промышленные предприятия для электроэрозионной обработки металла применяют специальное оборудование, такое как:
- проволочно- электроэрозионное;
- копировально-прошивочное.
Если возникает необходимость изготовить детали со сложной формой и пресс-формы, а также для производства некоторых материалов с высокой точностью обработки, применяют проволочно- электроэрозионные агрегаты . Чаще всего такое оборудование используется для изготовления различных деталей для электроники, самолетов, и даже космической сферы.
Копировально-прошивочные агрегаты в основном применяются для серийного и массового производства деталей. Благодаря таким станкам получаются довольно точные сквозные контуры и мелкие отверстия, что с успехом используется при изготовлении сеток и штампов в инструментальной промышленной сфере. Такое оборудование подбирают, ориентируясь на поставленные цели и финансовую окупаемость . Электроэрозионная обработка металла считается сложным и довольно трудоемким рабочим процессом.
Такие работы невозможно выполнить в домашних условиях. Выполнять работы на станках для обработки деталей имеют право только аттестованные и квалифицированные специалисты, имеющие достаточный опыт работы в этой сфере.
Выполняя электроэрозионную обработку, не стоит забывать о технике безопасности и использовании спецодежды.
Преимущества электроэрозионной обработки
Такие работы должны осуществляться только на специальном оборудовании под обязательным присмотром квалифицированного специалиста, имеющего соответствующий допуск . Хотя такой способ делает заготовку более точной и качественной, промышленные предприятия предпочитают применять механическую обработку металла.
Поэтому необходимо отметить основные достоинства электроэрозионного воздействия на разнообразные виды заготовок.
Используя такой метод, практически всегда удается добиться самого высокого качества поверхности металла, в результате чего она становится максимально точной и однородной . При этом полностью исключается необходимость проведения финишной обработки. Также этот метод гарантирует получение на выходе поверхности разнообразной структуры.
Также к достоинствам электроэрозионной обработки металла относят возможность осуществлять работу с поверхностью любой твердости.
Электроэрозионное воздействие полностью исключает возникновение деформации поверхности у деталей, имеющих небольшую толщину. Это возможно из-за того, что при таком методе не возникает никакой механической нагрузки , а рабочий анод имеет минимальный износ. Кроме того, электроэрозионная обработка способствует получению поверхности разнообразных геометрических форм и конфигураций при минимальных усилиях.
Также к преимуществам такого процесса относят полное отсутствие шума при работе на специальном оборудовании.
Конечно, есть и недостатки при электроэрозионном воздействии на деталь из металла, но на ее эксплуатационных свойствах сказываются они несущественно.
Технология обработки
Чтобы до конца выяснить все преимущества электроэрозионной обработки и понять принцип воздействия на металлическую заготовку, следует более подробно рассмотреть следующий пример.
Итак, простая электроэрозионная схема должна обязательно состоять из следующих элементов:
- электрод;
- конденсатор;
- емкость для рабочей среды;
- реостат;
- источник, обеспечивающий электропитание.
Питание этой схемы обеспечивается напряжением импульсного типа, которое должно иметь разную полярность. Благодаря этому можно получить электроискровый и электроимпульсный режимы, которые требуются для работы.
Во время подачи напряжения осуществляется зарядка конденсата, от которого на электрод поступает разрядный ток. Этот электрод заранее опускают в емкость с заготовкой и рабочим составом. Как только на конденсаторе напряжение достигнет нужного потенциала, происходит пробой жидкости. Она начинает очень быстро нагреваться до температуры кипения
Электроэрозионная проволочная резка металла – электроискровой метод обработки, позволяющий обрабатывать внутренние сквозные и наружные поверхности сложной формы, такие как шлицевые поверхности, поверхности зубьев шестерен, рабочие поверхности фильер экструдеров и т.д.
Мы осуществляем разработку чертежей по предоставленным эскизам и образцам
*В цену не включены амортизационные расходы на оборудование и инструмент, электроэнергия, налогообложения основных фондов. Стоимость материала и его доставки к участку металлообработки.
Требования к чертежам деталей
1. В чертеже надо указать материал заготовки, все размеры, допуски и требования к поверхности после обработки.
2. Чертеж выполняется в электронном виде и предоставлен в векторном формате (Autocad, Corel, и т.п.)
Станочное оборудование
Для электроэрозионной обработки деталей и материалов электроискровым способом на нашем производстве используется прецизионный электроискровой проволочно-вырезной станок с ЧПУ марки Sodick AQ325LN1 с линейными двигателями. Технические возможности станка позволяют выполнять следующие виды работ:
- изготовление оснастки и приспособлений (штампов, шаблонов, пресс-форм, матриц, специального инструмента) из высокопрочных материалов с высокой точностью;
- доводка изделий до требуемых размеров;
- высокоточная фигурная резка металла (вырезание отверстий цилиндрической и конической формы, полостей сложной формы, прямых и профильных углублений, прорезей и канавок);
- электроэрозионная обработка изделий ячеистой конструкции (сетки, сита и т.п.);
- электроэрозионная обработка твердых и жаропрочных материалов и сплавов с чистотой до 12 класса шероховатости.
Операции выполняются в автоматическом режиме при помощи контроллера ЧПУ с программным обеспечением, управляющего технологическим процессом с учетом множества влияющих на него параметров (характеристики материала, сложность конфигурации детали, условия резки и т.д.).
Электроэрозионная обработка металла позволяет значительно сократить количество операций на изготовление изделий, наладить производство деталей повышенной сложности, которые невозможно изготовить на современном станочном оборудовании механической обработкой. Готовые изделия не нуждаются в дополнительной доработке качества поверхности, не зависимо от толщины не подвергаются деформациям, материал сохраняет все свои физические свойства. Точность изготовления деталей электроэрозионным способом в 1,5-2 раза выше по сравнению с традиционными механическими методами металлообработки.
Производственные возможности по электроэрозионной обработке
Электроэрозионный проволочно-вырезной станок Sodick AQ325LN1 имеет следующие технические характеристики:
Параметры | Значения |
---|---|
Основные размеры, мм | |
габариты рабочей поверхности стола (длина х ширина) | 600 х 400 |
перемещение стола (длина х ширина х высота) | 350 х 250 х 220 |
ход конусного стола в двух плоскостях | 80 |
толщина заготовки при способе резания (струйном / погружном) | 220 / 200 |
Угол конусного резания | 20 о / 80 мм |
Максимальный вес заготовки, кг | |
при струйном резании | 450 |
при погружном резании | 300 |
Потребляемая мощность, кВт | 6-8 |
Обработка металлов различного уровня твердости с высокой точностью возможна при использовании нетрадиционных способов. К ним относится и резка, шлифовка и укрепление поверхности электроэрозионными воздействиями. Электроэрозионный станок придуман достаточно давно, но получил распространение только в последние десятилетия.
Первый станок промышленного уровня был создан компанией CHARMILLES TECHNOLOGIES в 1952 году, а электроэрозионный станок с ЧПУ появился в 1969 году. По сравнению с традиционными способами обработки металлов – ковкой, литьем, шлифованием, фрезеровкой, электроискровой способ можно считать инновационным. Первым упоминаниям о кованых и литых изделиях несколько тысяч лет.
Границы применения электроэрозионной обработки
Все металлы относятся к токопроводящим веществам, поэтому электроэрозионная обработка применима ко всем видам сплавов. С ее помощью можно выполнять широкий спектр работ, начиная от обычной резки и сверления и заканчивая:
- тонким шлифованием;
- наращиванием поверхности и восстановлением конфигурации;
- упрочнением;
- копированием;
- прошивкой;
- гравировкой;
- напылением.
Электроэрозионное оборудование базируется на принципе возникновения кратковременной электрической дуги, которая приводит к потере вещества катодом и анодом. При кратковременном импульсе вещество удаляется с анода, при более длительном – с катода. Современные электроэрозионные станки используют в работе оба вида импульсов. К положительному или отрицательному полюсу могут подсоединяться и рабочий инструмент и обрабатываемая деталь.
Единственное условие, которое соблюдается во всех видах станков – используется только постоянный ток. Уровень напряжения и сила тока зависят исключительно от параметров обрабатываемого металла. Частота возникновения импульсов определяется механическим сближением и отдалением электрода и рабочей поверхности – пробой возникает только на определенном расстоянии между контактными поверхностями.
Электроимпульсная обработка металлов направленная на разрушение обрабатываемой детали (резание или сверление) производится в диэлектрической среде, представляющей собой специальную жидкость. Чаще всего используются масло, керосин или дистиллированная вода. Операции по наращиванию поверхности, укреплению или напылению выполняются в воздухе или вакууме.
Электроэрозионная резка металла
Этот вид обработки используется в случаях, когда необходимо изготовление сложных по контуру деталей небольшого размера с высокой точностью кромок, изготовление деталей из особо твердых сплавов, в ювелирном деле. Ограничения по размерам заготовок и толщине обрабатываемого материала определяются только конструкцией конкретного станка. В большинстве случаев, электроэрозионная обработка резкой применяется на промышленных предприятиях, ориентированных на крупносерийное производство деталей высокой точности, не требующих дальнейшей обработки.
Но без особого труда можно построить электроэрозионный станок своими руками, если обладать некоторыми слесарными навыками и определенными знаниями электроники и электротехники. Схема самодельного электроэрозионного станка для резки несложная и реализовать ее можно даже в домашних условиях, не говоря уже о металлообрабатывающей мастерской или цехе небольшого предприятия.
Но следует учесть, что в самодельных станках очень сложно реализовать главные преимущества электроэрозионной обработки – высокую точность и универсальность. Тугоплавкие металлы и сплавы режутся очень медленно и требуют большого расхода электроэнергии.
При резке металла заготовка подключается к положительному полюсу источника тока, рабочий электрод – к отрицательному. Потеря вещества на аноде – не что иное, как эрозия, разрез, толщина которого зависит от геометрии катода. Большую роль играет и вид диэлектрика, с которым работает определенный вид электроэрозионных станков.
Для промышленного производства применяются два основных вида оборудования – электроэрозионный проволочный станок (вырезной) и электроэрозионный прошивной станок. Первый вид используется при обработке габаритных деталей из толстостенного металла, второй – для более точной работы по копированию деталей из высокопрочных материалов или строгих требованиях к их форме.
Проволочно-вырезные станки
Электроэрозионный промышленный проволочно-вырезной станок работает по бесконтактному принципу взаимодействия токопроводящей проволоки (молибден, вольфрам или иной тугоплавкий металл) диаметром 0,1-0,2 мм и заготовки. Обрабатывать можно металл любого уровня тугоплавкости в различной толщине детали. К проволоке, намотанной на вращающиеся барабаны, которая движется в двух направлениях – по вертикали и в сторону обрабатываемой детали, подсоединен положительный полюс, к заготовке – отрицательный.
По мере движения линии проволоки возникает разряд, который прожигает в детали линии требуемой конфигурации. По сути, электроэрозионная обработка на проволочном станке выполняет операции фрезеровочного, но на металлах особой прочности и с точностью, недостижимой при механической обработке. Это включает:
- сверхмалые углы;
- закругления микродиаметров;
- сохранение параллельности линий на всей глубине;
- высокую точность поверхности кромок.
Точность обработки достигает 0,110-0,012 мм.
Электроэрозионные прошивные станки
Электроконтактная прошивочная обработка металлов заключается в воздействии точечного электрода с заданной формой поперечного сечения, от которого зависит форма эрозионного углубления в заготовке. Применяются они для обработки:
- нержавеющих сталей;
- инструментальных сплавов;
- титана;
- закаленной стали.
Но работать могут со всеми видами токопроводящих материалов, когда требуется изготовление отверстий или углублений большой глубины с минимальным диаметром и точной геометрией сечения.
Одной из самых сложных операций прошивочного станка является изготовление резьбовых отверстий в тугоплавких материалах высокой прочности. В этом случае используются только станки с ЧПУ. Электрод из тонкой проволоки заводится внутрь отверстия и перемещается в продольном и поперечном направлении (по осям X,Y, с одновременным перемещением по оси Z). Получается отверстие со сложной конфигурацией стенки, резьбовой или иного профиля.
Электроконтактная обработка позволяет получать высокоточные оттиски штампов, пресс-форм или иных малогабаритных деталей. В этом случае электрод является миниатюрной копией требуемого изделия, изготовленной из меди или графита. В зависимости от полярности соединения на заготовке получаются четкие углубления или не менее четкие выступы. Такие электроэрозионные станки производятся как в стационарном, так и в настольном исполнении (например, G11 ARAMIS (Чехия)).
Самодельные электроэрозионные станки
Самодельный электроэрозионный станок целесообразно собирать в том случае, если высокоточные работы с металлом выполняются часто и в относительно больших объемах. Это сложное в изготовлении оборудование, которое редко используется в быту. Он оправдан в металлообрабатывающих цехах и мастерских в качестве финишного инструмента обработки заготовок после фрезерного или токарного станков или изготовления мелких деталей сложной конфигурации.
Принцип работы электроэрозионного станка требует изготовления как электронной схемы, генерирующей импульсный ток высокой силы, так и сложной механической части, обеспечивающей движение электрода (проволочного или штучного). Основная сложность – сделать генератор, который может за короткое время накопить достаточный для пробоя заряд, выбросить его за доли секунды и за столь же короткий промежуток восстановить его. При недостаточной плотности тока электроэрозионная обработка невозможна даже на тонких деталях из мягких металлов.
Основные части самодельного проволочного электроэрозионного станка:
- станина – чугун или сталь;
- рабочий стол – прочный пластик или нержавейка;
- ванна для диэлектрика, служащая рабочей зоной;
- система подачи проволоки (две катушки, электродвигатель, привод, направляющие);
- система управления электродом (для прошивочных);
- система запуска и остановки;
- блок прокачки диэлектрика – насос, фильтры, трубопроводы;
- генератор;
- система управления.
Последний пункт – один из самых сложных, необходимо синхронизировать подачу проволоки по скорости и направлению, частоту импульса и подачу диэлектрической жидкости. Следует учесть, что в процессе работы жидкость ионизируется, и свойства ее значительно изменяются.
В зависимости от схемы генератора станка, в нем используются весьма опасные токи величиной 1-30А при напряжении 220 В. Изоляция всех токопроводящих частей должна быть исключительно надежной. Как работает самодельный станок можно посмотреть на видео, или здесь.
После анализа различной информации из интернета, можно сделать вывод, что по-настоящему работоспособными являются только промышленные станки. Самоделки пригодны для гравировки, нанесения надписей, пиления тонких листов металла, с которым справиться может качественный профессиональный электролобзик.