Прямая АВ называется образующей, линия MN – направляющей, а точка S – вершиной конической поверхности.
1. Конус.
Конусом называют тело, ограниченное частью конической поверхности, расположенной по одну сторону от вершины, и плоскостью, пересекающей все образующие. Часть конической поверхности, ограниченная этой плоскостью, называется боковой поверхностью, а часть плоскости, отсекаемая боковой поверхностью, – основанием конуса. Перпендикуляр, опущенный из вершины на плоскость основания, называется высотой конуса (фиг.295,а).
Конус называется прямым круговым, если его основание – круг, а высота проходит через центр основания. Такой конус можно рассматривать как тело, полученное вращением прямоугольного треугольника SAO вокруг катета SO , как оси. При этом гипотенуза SA описывает боковую поверхность, а катет АО – основание конуса (фиг.295,б).
Если ось вращения прямого кругового конуса параллельна плоскости проекций, то проекция конуса на эту плоскость является треугольником (равнобедренным или равносторонним), основание которого будет равно диаметру основания конуса, а стороны – образующей конуса.
Если ось вращения конуса перпендикулярна плоскости проекций, то проекция конуса на эту плоскость будет кругом, равным натуральной величине основания конуса. В этом случае образующие на проекции не изображаются.
2. Изображение прямого кругового конуса (фиг.296).
Дано: основание конуса, расположенного на плоскости П 1
I. Комплексный чертеж
I, а. Проектируем основание конуса – круг, расположенный в плоскости П 1 , и вершину конуса – точку S , расположенную в пространстве на вертикальной прямой, проходящей через центр основания. Высота точки S равна высоте конуса. Горизонтальная проекция этой точки находится в центре окружности – горизонтальной проекции основания.
I, б. Проектируем боковую поверхность конуса. Для этого достаточно спроектировать на плоскость П 2 контурные образующие, для чего соединяем прямыми фронтальные проекции вершины S 2 с проекциями крайних точек основания и получаем проекции контурных образующих, а в целом – фронтальную проекцию данного конуса – равнобедренный треугольник, основание которого равно диаметру основания конуса, а высота треугольника – высоте конуса.
На горизонтальной проекции боковой поверхности конуса дана горизонтальная проекция А 1 точки А , требуется найти ее фронтальную проекцию. Для этого на горизонтальной проекции конуса через точку А 1 проводим окружность – горизонтальную проекцию параллели, затем находим ее фронтальную проекцию и при помощи вертикальной линии связи (направление которой на чертеже показано стрелкой) находим фронтальную проекцию A 2 точки A .
I. в. Эту задачу можно решить и при помощи образующей. На фронтальной проекции боковой поверхности конуса дана фронтальная проекция В 2 точки В . Из точки S 2 через точку В 2 проводим прямую S 2 М 2 – проекцию образующей конуса, затем находим ее горизонтальную проекцию S 1 М 1 и на ней при помощи вертикальной линии связи определяем место горизонтальной проекции точки В .
II. Развертка поверхности прямого кругового конуса – плоская фигура, составленная из сектора и окружности, диаметр которой равен диаметру окружности основания. Радиусом сек-гора является образующая конуса, а длина дуги равна длине окружности основания конуса. Угол сектора можно определить по формуле (a =360°R ÷ L) где R – радиус окружности основания конуса; L – образующая конуса. При построении развертки следует придерживаться следующего порядка:
а) определить угол а сектора;
б) построить развертку боковой поверхности конуса – сектор ;
в) пристроить к любой точке, дуги сектора основание конуса – круг .
Перенос точки В на развертку боковой поверхности конуса осуществляется при помощи размеров С 1 М 1 и R 2 , взятых с (фиг.296, I , в).
III. Наглядное изображение конуса в аксонометрии (изометрия и диметрия).
III, а. Изображаем основание конуса – овал по данному условию. Через центр основания проводим ось z” и на ней от точки О” откладываем высоту конуса О”S” , получаем его вершину S” .
III, б. Изображаем контурные образующие. Из точки S” проводим прямые, касательные к овалу, получаем изображение конуса. Невидимую часть основания (половину овала) изображаем штриховыми линиями.
Определение точки А на боковой поверхности осуществляем при помощи нанесения на поверхность конуса параллели, диаметр параллели берем с горизонтальной проекции (фиг.296, I, б), а ее центр О 2 определяем размером H 1 , с фронтальной проекции (фиг.296, I, б). Место точки А на параллели определяется пересечением вспомогательной прямой, проведенной на расстоянии k параллельно оси у” с параллелью.
Определение точки В на боковой поверхности конуса осуществляется:
а) нанесением на коническую поверхность образующей S”M” при помощи размеров h и f ;
б) нахождением вторичной проекции В 1 точки В при помощи размера i/2 ;
в) проведением вспомогательной прямой из точки В” 1 параллельно оси вращения S”O” . Пересечение вспомогательной прямой с образующей конуса определяют место точки В” .
Определить места точек А и В на боковой поверхности конуса можно и при помощи координат.
ТОР
Тело, полученное от вращения окружности (эта окружность называется образующей) вокруг оси, расположенной в плоскости этой окружности, но не проходящей через ее центр, называется ТОРОМ . Если ось вращения. не пересекает окружность, то тор называют кольцом (фиг.297). Изображение кольца (фиг.298).
1. Комплексный чертеж
I, а. Дано: ось кольца перпендикулярна плоскости П 1 (диаметр D образующей окружности кольца и диаметр D ц окружности центров образующих окружностей (фиг.298,а).
I, б. Горизонтальная проекция кольца выявится двумя концентрическими окружностями (фиг.298,б) диаметр большей равен D ц + D ; диаметр меньшей Dц – D . Фронтальная проекция выявится двумя образующими окружностями, сопряженными прямыми.
Заметим, что внутренние половины окружностей необходимо изобразить штриховыми линиями, как невидимые.
I, в. Дано: горизонтальные проекции параллелей и на них проекции двух точек: точки А (A 1 ) на малой параллели; точки В (B 2 ) на большой (фиг.298,в). Требуется найти их фронтальные проекции. Для этого сначала надо найти фронтальные проекции параллелей, а затем при помощи вертикальных линий связи определить на них места фронтальных проекций А 2 и В 2 .
II. Наглядное изображение кольца в изометрии и диметрии.
II, а. Изооражаем место центров сфер – окружность (D” ц ), расположенную в горизонтальной плоскости.
II, б. Изображаем контур поверхности кольца при помощи вспомогательных сфер, для чего проводим ряд окружностей диаметром D – контуров сфер, центры которых расположены на окружности центров. Затем к окружностям проводим плавную касательную, выявляя очерк кольца.
ШАР
Тело, полученное от вращения полукруга вокруг диаметра, называется шаром, а поверхность, образуемая при этом окружностью, называется шаровой или сферой. Можно также сказать, что эта поверхность есть геометрическое место точек, одинаково удаленных от одной и той же точки, называемой центром. Отрезок, соединяющий центр с какой-нибудь точкой поверхности, называется радиусом, а отрезок, соединяющий две точки поверхности и проходящий через центр, называется диаметром шара (фиг.299).
Всякая проекция шара является кругом, очерками проекций на плоскость П 1 является проекция экватора, на плоскость П 2 и П 3 являются проекции меридианов.
Изображение шара (фиг.300). Дано: одной точкой поверхности шар касается плоскости П 1 .
I. Комплексный чертеж
I, а. Проектируем экватор шара – окружность, лежащую в горизонтальной плоскости, горизонтальная проекция – это окружность, диаметр которой равен диаметру шара. Фронтальная проекция – прямая (обычно на чертеже не изображается).
Проектируем главный меридиан – окружность, лежащую в фронтальной плоскости; фронтальной проекцией является окружность, по условию касательная оси х 12 ; диаметр окружности равен диаметру шара, горизонтальная проекция прямая (обычно на чертеже не изображаемая).
В результате получим проекции шара.
I, б. На поверхности шара дана фронтальная проекция А 2 точки А , требуется найти ее горизонтальную проекцию.
Для этого через точку А 2 проведем прямую параллельно оси – фронтальную проекцию параллели, затем находим ее горизонтальную проекцию и при помощи вертикальной линии связи (направление которой на чертеже показано стрелкой) определяем место горизонтальной проекции А 1 точки А . Развертка поверхности шара. Развертка может быть построена только приближенно, так как шаровая поверхность (сфера) принадлежит к поверхностям неразвертывающимся.
Построение развертки будем выполнять методом долей (существуют и другие методы).
I, в. Для этого фронтальную проекцию главного меридиана – окружность – делим на 12 равных чаетей, каждая часть деления будет равна 1 / 12 п D (т.е. 1 / 12 меридиана). Через точки деления 1 , 2 и 3 проводим прямые, параллельные оси x 12 – проекции параллелей, и находим их горизонтальные проекции – окружности. D П1 – первая параллель; D П2 – вторая параллель и D Э – экватор. Затем горизонтальную проекцию экватора – окружность D Э – делим на 12 равных частей, каждая часть деления будет равна (1 / 12 П D Э) (т.е. 1 / 12 экватора); через каждое деление экватора проводим меридиональные плоскости, которые разделяют поверхность шара, а следовательно, и каждую параллель на 12 долей; получим части параллелей 1 / 12 П D П1 и 1 / 12 П D П2
II. Построение одной доли. Проводим прямую O 1 O 2 , равную ( П D M ÷ 2 ) и от точки О 1 откладываем три раза части, равные ( П D M ÷ 12 ), и через каждую часть проводим прямые, перпендикулярные к O 1 O 2 , на которых откладываем отрезки: (3 – 3 = П D Э ÷ 12); (2 – 2 = П D П2 ÷ 12) ; (2 – 2 = П D П1 ÷ 12) , как показано на чертеже. Соединив плавной кривой последовательно точки 3 – 2 – 1 – 0 1 – 1 – 2 – 3 , получим половину очертания доли. Построив вторую половину, получим одну долю, т.е. 1/12 часть приближенной развертки поверхности шара. Для получения полной развертки поверхности шара следует построить 12 долей.
III. Наглядное изображение шара в изометрии .
III, а. Изображаем экватор шдра как аксонометрическую проекцию окружности, лежащую в горизонтальной плоскости.
III, б. Точку О” принимаем за центр, проводим окружность (касательную к овалу), получаем изометрическую проекцию шара. Диаметр окружности равен длине овала.
Определение места точки А на шаровой поверхности можно осуществить при помощи параллели. Изображаем на поверхности шара параллель, пользуясь размерами h и D П место точки на параллели определяем с помощью прямой, проведенной параллельно оси у” на расстоянии k .
Определить точку А на шаровой поверхности можно при помощи координат.
Упражнение
Пример 1.
а) Выполнить комплексные чертежи геометрических тел согласно примерам А, Б и В по данным размерам (
Елена Голубева
Презентация для изучения темы “Тела вращения”.
Конус – это тело, которое состоит из круга. Круг является основанием конуса .
Вершиной конуса – являются точки не лежащие в плоскости этого круга и всех отрезков, соединяющих вершину конуса с точками основания.
Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса .
Прямой конус – если прямая, соединяющая вершину конуса с центром основания, перпендикулярно плоскости основания.
Высота конуса – перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания.
Ось прямого кругового конуса – это прямая, содержащая его высоту.
Скачать:
Предварительный просмотр:
Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com
Подписи к слайдам:
К о н у с
Наглядно прямой круговой конус можно представить себе как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.
Конус – это тело, которое состоит из круга. Круг является основанием конуса. Вершиной конуса – являются точки не лежащие в плоскости этого круга и всех отрезков, соединяющих вершину конуса с точками основания. Отрезки, соединяющие вершину конуса с точками окружности основания, называются образующими конуса. Прямой конус – если прямая, соединяющая вершину конуса с центром основания, перпендикулярно плоскости основания. Высота конуса – перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Ось прямого кругового конуса – это прямая, содержащая его высоту.
Концы отрезка АВ лежат на окружностях оснований цилиндра. Радиус цилиндра равен r , его высота – h , а расстояние между прямой АВ и осью цилиндра равно d . Найдите h , если r = 10 дм, d = 8 дм, АВ = 13 дм. ЗАДАЧА Дано: Цилиндр, r = 10 дм – радиус основания, d = 8 дм – расстояние от ОО1 до АВ, АВ = 13 дм, h – высота. Найти: h . А 1 О О 1 В 1 K Решение: Построим секущую плоскость ВВ 1 АА 1 , параллельную оси цилиндра, в которой лежит прямая АВ. Получили прямоугольник с диагональю АВ. ВВ 1 АА 1 ║ОО 1 . ВВ 1 = АА 1 = h . ВАВ 1 – прямоугольный. По теореме Пифагора: ВВ 1 = √ АВ ² – АВ 1 ² Найдем АВ 1: ∆ОАВ1 – равнобедренный (ОА = ОВ1 = r). ОК = d т. к. ОК ┴ АВ1 (высота ∆ ОАВ1), то ОК – медиана (К – середина отрезка АВ1). ∆АОК – прямоугольный, по теореме Пифагора: КА = √ ОА ² – ОК ² , КА = √ 10 ² – 8 ² = 6 дм АВ1 = 2 · КА = 6 · 2 = 12 дм ВВ1 = √ 13 ² – 12 ² = √ (13 – 12)(13 + 12) = 5 дм, h = ВВ1 = 5 дм.
Дано: цилиндр ABCD – сечение, квадрат дуга AD – 90 ° R = 4 см Найти: S ABCD Решение: S ABCD = AB · BC = BC 2 , т.к. ABCD – квадрат ВОС – прямоугольный, т.к. дуга AD – 90 ° ВОС = 90 ° ОС = ОВ = 4 (см), т.к. ОС и ОВ – радиусы основания ВС = ОВ 2 + ОС 2 = 4 2 + 4 2 = 32 = 4 2 (см) S ABCD = (4 2) 2 = 32 (см 2) Ответ: 32 см 2
Полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих вершину и точки плоской поверхности (последнюю в таком случае называют основанием конуса, а конус называют опирающимся на данное основание). Далее будет рассматриваться именно этот случай, если не оговорено обратное. Если основание конуса представляет собой многоугольник , конус становится пирамидой .
“== Связанные определения ==
- Отрезок, соединяющий вершину и границу основания, называется образующей конуса .
- Объединение образующих конуса называется образующей (или боковой ) поверхностью конуса . Образующая поверхность конуса является конической поверхностью .
- Отрезок, опущенный перпендикулярно из вершины на плоскость основания (а также длина такого отрезка), называется высотой конуса .
- Если основание конуса имеет центр симметрии (например, является кругом или эллипсом) и ортогональная проекция вершины конуса на плоскость основания совпадает с этим центром, то конус называется прямым . При этом прямая, соединяющая вершину и центр основания, называется осью конуса .
- Косой (наклонный ) конус – конус, у которого ортогональная проекция вершины на основание не совпадает с его центром симметрии.
- Круговой конус – конус, основание которого является кругом.
- Прямой круговой конус (часто его называют просто конусом) можно получить вращением прямоугольного треугольника вокруг прямой , содержащей катет (эта прямая представляет собой ось конуса).
- Конус, опирающийся на эллипс , параболу или гиперболу , называют соответственно эллиптическим , параболическим и гиперболическим конусом (последние два имеют бесконечный объём).
- Часть конуса, лежащая между основанием и плоскостью, параллельной основанию и находящейся между вершиной и основанием, называется усечённым конусом .
Свойства
- Если площадь основания конечна, то объём конуса также конечен и равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.
- Центр тяжести любого конуса с конечным объёмом лежит на четверти высоты от основания.
- Телесный угол при вершине прямого кругового конуса равен
где – угол раствора конуса (то есть удвоенный угол между осью конуса и любой прямой на его боковой поверхности).
- Площадь боковой поверхности такого конуса равна
где – радиус основания, – длина образующей.
- Объем кругового конуса равен
- Пересечение плоскости с прямым круговым конусом является одним из конических сечений (в невырожденных случаях – эллипсом, параболой или гиперболой, в зависимости от положения секущей плоскости).
Обобщения
В алгебраической геометрии конус – это произвольное подмножество векторного пространства над полем , для которого для любого
См. также
- Конус (топология)
Wikimedia Foundation . 2010 .
Смотреть что такое “Прямой круговой конус” в других словарях:
Прямой круговой конус. Прямой и … Википедия
Прямой круговой конус Конус тело, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность. Иногда конусом называют часть такого тела, полученную объединением всех отрезков, соединяющих … Википедия
Конус – Прямой круговой конус. КОНУС (от латинского conus, от греческого konos шишка), геометрическое тело, ограниченное круглой конической поверхностью и плоскостью, не проходящей через вершину конической поверхности. Если вершина лежит на… … Иллюстрированный энциклопедический словарь
– (лат. conus; греч. konos). Тело, ограниченное поверхностью, образующейся от обращения прямой, коей один конец неподвижен (вершина конуса), а другой двигается по окружности данной кривой; с виду похож на сахарную голову. Словарь иностранных слов,… … Словарь иностранных слов русского языка
КОНУС – (1) в элементарной геометрии геометрическое тело, ограниченное поверхностью, образуемой движением прямой (образующей конуса) через неподвижную точку (вершину конуса) вдоль направляющей (основание конуса). Образуемая поверхность, заключённая между … Большая политехническая энциклопедия
– (прямой круговой) геометрическое тело, образуемое вращениемпрямоугольного треугольника около одного из катетов. Гипотенузаназывается образующей; неподвижный катет высотой; круг, описываемыйвращающимся катетом основанием. Боковая поверхность К.… … Энциклопедия Брокгауза и Ефрона
– (прямой круговой К.) геометрическое тело, образуемое вращением прямоугольного треугольника около одного из катетов. Гипотенуза называется образующей; неподвижный катет высотой; круг, описываемый вращающимся катетом основанием. Боковая поверхность …
– (прямой круговой) геометрическое тело, образуемое вращением прямоугольного треугольника около одного из катетов. Гипотенуза называется образующей; неподвижный катет высотой; круг, описываемый вращающимся катетом основанием. Боковая поверхность К … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
– (лат. conus, от греч. konos) (математика), 1) К., или коническая поверхность, геометрическое место прямых (образующих) пространства, соединяющих все точки некоторой линии (направляющей) с данной точкой (вершиной) пространства.… … Большая советская энциклопедия