Шлицевым называется разъемное соединение составных частей изделия с применением пазов (шлицев) и выступов. Шлицевые соединения бывают подвижные и неподвижные. Детали шлицевого соединения (вал и втулка) показаны на рис. 3.28. Шлицевое соединение можно представлять как многошпоночное, у которого шпонки выполнены за одно целое с валом. Шлицевые соединения по сравнению со шпоночными обладают значительными преимуществами, а именно: меньшее число деталей в соединении, значительно большая нагрузочная способность за счет большей площади контакта рабочих поверхностей вала и ступицы, меньшая концентрация напряжений в материале вала и ступицы, лучшее центрирование соединяемых деталей и более точное направление при осевом перемещении, высокая надежность при динамических и реверсивных нагрузках. Эти преимущества обеспечили широкое распространение шлицевых соединений в автомобильной, тракторной, станкостроительной и других отраслях промышленности.
Недостаток шлицевых соединений – высокая трудоемкость и стоимость их изготовления.
Шлицы на валах чаще всего выполняют фрезерованием дисковой фасонной фрезой (методом деления), или червячной шлицевой фрезой на шлицефрезерном станке (методом обкатки); отделочные операции выполняют на шлицешлифовальных станках. Шлицевание отверстий в ступицах деталей обычно выполняют шлицевыми протяжками на протяжных станках.
Основные типы шлицевых соединений показаны на рис. 3.29: прямо-бочное (а), эвольвентное (б), треугольное (в). Первые два типа шлицевых соединений стандартизованы.
Наибольшее распространение имеют соединения шлицевые прямобочные, размеры и допуски которых регламентированы ГОСТом. Эти соединения применяют, например, для посадки подвижных и неподвижных зубчатых колес на валы в коробках передач металлорежущих станков. Стандарт предусматривает прямобочные шлицевые соединения трех серий: легкой, средней (обе с числом зубьев от 6 до 10) и тяжелой (с числом зубьев от 10 до 20), отличающихся друг от друга высотой зубьев и, следовательно, нагрузочной способностью.
Прямобочные шлицевые соединения выполняют с центрированием (рис. 3.30): по боковым сторонам зубьев (а), по наружному диаметру (б), по внутреннему диаметру (в). Центрирование по боковым сторонам зубьев обеспечивает более равномерное распределение нагрузки между зубьями и поэтому его применяют при ударных и реверсивных нагрузках (например, в карданных валах); центрирование по наружному или внутреннему диаметрам обеспечивает более высокую соосность вала и ступицы. Метод центрирования имеет прямое отношение к технологии изготовления деталей соединения, причем наиболее технологично центрирование по наружному диаметру, применяемому при невысокой твердости внутренней поверхности ступицы (H <350НВ). В этом случае шлицевре отверстие обрабатывают протяжкой, а посадочную поверхность вала шлифуют. При высокой твердости посадочной поверхности ступицы и вала рекомендуется центрирование по внутреннему диаметру. В этом случае после термообработки посадочные поверхности ступицы и вала шлифуют соответственно на внутришлифовальном и шлицешлифо-вальном станках.
Более совершенны, но пока менее распространены, шлицевые эвольвентные соединения с углом профиля 30°, размеры, допуски и измеряемые величины которых установлены ГОСТ 6033-80*. Эвольвентные шлицевые соединения по сравнению с прямобочными более технологичны, так как шлицевые валы можно нарезать червячными фрезами с прямолинейным профилем, а шлицевые ступицы большого размера нарезать долбяками на зубодолбежных станках. Кроме того, эвольвентные шлицевые соединения обладают большей нагрузочной способностью, так как их зубья утолщаются к основанию и имеют значительно (до двух раз) меньшую концентрацию напряжений за счет закруглений у основания зубьев.
Основные стандартные параметры эвольвентного соединения (рис. 3.29, б): номинальный диаметр D, угол профиля а = 30°, модуль т, диаметр делительной окружности d = mz, где z – число зубьев. Стандарт предусматривает номинальные диаметры от 4 до 500 мм, модули от 0,5 До 10 мм и числа зубьев от 6 до 82.
Соединения с эвольвентными зубьями выполняют с центрированием по боковым поверностям зубьев и реже по наружному диаметру; допускается применять центрирование по внутреннему диаметру. При центрировании по боковым поверхностям зубьев и при плоской форме дна впадины высота зубьев вала и втулки равна модулю, т. е. h = Н = т, а рабочая высота профиля (с учетом зазоров и фасок) приблизительно равна 0,8m .
Эвольвентные зубья, как и прямобочные, можно применять в подвижных и неподвижных соединениях.
Соединения шлицевые треугольные не стандартизованы и применяются как неподвижные при тонкостенных ступицах, пустотелых валах, стесненных габаритах деталей и сравнительно небольших вращающих моментах. Центрирование соединения выполняется по боковым поверхностям зубьев. Треугольные шлицевые соединения бывают цилиндрическими и коническими.
Расчет шлицевых соединений. Основными критериями работоспособности шлицевых соединений являются сопротивление рабочих поверхностей зубьев смятию и изнашиванию. Расчет прямобочных шлицевых соединений регламентирован ГОСТом, согласно которому нагрузочная способность соединения определяется как меньшее из двух значений, полученных по расчету на смятие и на износ. Соединения типа муфт, нагруженные только вращающим моментом, на износ не рассчитывают.
Расчет на смятие производится по условию
σ см = 2Т / (d c р A c м) < [σ см ]
где Т – вращающий момент; d cp = (D + d)/2 – средний диаметр шлице-вого соединения; A c м – площадь смятия; [σ см ] – допускаемое среднее давление из расчета на смятие.
Для прямобочного соединения А см = h p l z, где h p – рабочая высота зубьев; l – длина ступицы, z – число зубьев.
Для удобства расчетов введем понятие удельного суммарного статического момента S F – площади рабочих поверхностей соединения относительно оси вала (значения S F в мм 3 /мм для всех типоразмеров приведены в таблице ГОСТ 21425-75).
S F = 0,5d ср h p z ,
тогда расчетная формула на смятие приобретает вид
σ = T/( S F l ) < [σ см ]
Расчет соединения на износ производится по формуле
σ = T/( S F l ) < [σ изн ],
где [а изн ] – допускаемое давление из расчета на износ.
Допускаемое среднее давление из расчета на смятие
[σ см ] = σ т / ([s] K см *К g)
где [s] = 1,25… 1,4 – допускаемый коэффициент запаса прочности (верхнее значение для закаленных рабочих поверхностей); К см – общий коэффициент концентрации нагрузки, определяемый по таблицам стандарта (грубо ориентировочно К см = 4…5); К g = 2…2,5 – коэффициент динамичности нагрузки при реверсировании без ударов (верхнее значение для незакаленных поверхностей).
Допускаемое среднее давление из расчета на износ определяется по таблицам стандарта.
Расчет шлицевых эвольвентных соединений на смятие ведется по формуле
σ см = 2Т/(dA см) < [σ см ]
где d = mz- диаметр делительной окружности; m – модуль соединения, z- число зубьев; А см =h p lz – условная площадь смятия; h p = 0,8m – рабочая высота зубьев; l – длина ступицы.
Допускаемое напряжение смятия устанавливают в зависимости от характера соединения (подвижное, неподвижное), условий эксплуатации, термообработки и других факторов. Для подвижных соединений [σ см ] = 3…70 МПа, для неподвижных [σ см ] = 35…200 МПа (нижние значения для ударной нагрузки).
Шлицевые соединения различают: по характеру соединения – неподвижные для закрепления детали на валу; подвижные , допускающие перемещение вдоль вала; по форме зубьев прямобочные , эвольвентные , треугольные; по способу центрирования (обеспечения совпадения геометрических осей) ступицы относительно вала с центрированием по наружному диаметру В , по внутреннему диаметру,и по боковым поверхностям зубьев. Зазор в контакте поверхностей: центрирующих практически отсутствует, нецентрирующих значительный.
2.3. Расчет шлицевых соединений
Основными критериями работоспособности шлицевых соединений являются сопротивления рабочих поверхностей смятию и изнашиванию.
Параметры соединения выбирают по таблицам стандарта в зависимости от диаметра вала, а затем проводят расчет по критериям работоспособности. Смятие и изнашивание рабочих поверхностей связаны с действующими на контактирующих поверхностях напряжениями см.
Упрощенный (приближенный) расчет основан на ограничении напряжений смятия допускаемыми значениями см., назначаемыми на основе опыта эксплуатации подобных конструкций:
где Т- расчетный вращающий момент (наибольший из длительно действующих моментов при переменом режиме нагружения), Н-м;
К3- коэффициент неравномерности распределения нагрузки между зубьями (зависит от точности изготовления и условий работы),
К = 1,1… 1,5;d- средний диаметр соединения, мм; число z -зубьев; h -рабочая высота зубьев, мм; l p -рабочая длина соединения, мм; см допускаемое напряжение смятия, Н/мм2. Для соединений с прямобочными зубьями:
f – фаска зуба.
Для соединения с эвольвентными зубьями:
Для соединения с треугольными зубьями
Вопрос 2 – Способы центрирования шлицевых соединений
Существуют три способа центрирования вала:
По наружному диаметру Самый простой и дешевый способ центрирования. Вал фрезеруют и шлифуют по наружному диаметру, втулку протягивают. Применяется при отсутствии термообработки поверхности отверстия втулки или при ее термическом улучшении (НВ 280-300) | По внутреннему диаметру Самый точный и дорогой способ центрирования. Вал фрезеруют и продольно шлифуют по внутреннему диаметру и боковым поверхностям шлицев, втулку протягивают и шлифуют по внутреннему диаметру. Применяется при закаленных втулке и вале. | По боковым сторонам Наиболее равномерное распределение нагрузки между шлицами; точность центрирования невысока. Вал фрезеруют и продольно шлифуют по боковым поверхностям шлицев, втулку протягивают. Применяется для тяжелонагруженных соединений при термически улучшенной поверхности отверстия втулки (НВ 280-300). |
Вопрос 3 – Прессовые соединения. Характеристика. Способы сборки
Прессовым называется соединение составных частей изделий с гарантированным натягом вследствие того, что размер охватываемой детали больше соответствующего размера охватывающей детали. Прессовые соединения передают рабочие нагрузки за счет сил трения покоя между сопряженными поверхностями, которые могут быть цилиндрическими и коническими. допускают нечастую разборку без нарушения целостности составных частей изделия. Разность размеров вала и отверстия до сборки называется натягом. Нагрузочная способность прессовых соединений определяется преимущественно натягом, который назначают в соответствии с посадками. Достоинства прессовых соединений : простота и технологичность конструкций за счет отсутствия соединительных деталей, обеспечение хорошего центрирования соединяемых деталей, возможность применения при очень больших осевых нагрузках и вращающих моментах, высокая надежность при ударных нагрузках.
Основные недостатки прессовых соединений : сложность демонтажа и возможность ослабления натяга после разборки, ограниченность несущей способности при вибрационных нагрузках за счет фреттинг-коррозии (разрушение сопряженных поверхностей при очень малых колебательных относительных перемещениях), рассеивание величины натяга и нагрузочной способности соединения за счет допусков на изготовление деталей. Прессовые соединения могут быть получены тремя способами: продольной сборкой путем запрессовки осевой силой; поперечной сборкой за счет нагрева или охлаждения одной из деталей до состояния, при котором они свободно соединяются; комбинированной , например, гидропрессовой сборкой, при которой одновременно с действием осевого усилия в зону контакта сопрягаемых деталей подается масло под высоким давлением для получения необходимой поперечной деформации. Из этих трех способов наименее совершенным является первый – запрессовка, так как при нем неизбежно повреждение контактных поверхностей, нарушение их микрогеометрии и, как следствие, снижение нагрузочной способности соединения в полтора-два раза.
Шлицевые соединения валов со ступицами (зубчатых колес, шкивов и т. п.) применяют для передачи вращающего момента. На валу изготовляют выступы (зубья), входящие во впадины (шлицы) ступицы.
Достоинства шлицевых соединений по сравнению со шпоночными. 1. Лучшее центрирование соединяемых деталей и более точное направление при их относительном осевом перемещении. 2. Меньшее число деталей соединения: шлицевое соединение образуют две детали, шпоночное три, четыре. З. При одинаковых габаритах возможна передача больших вращающих моментов за счет большей поверхности контакта. 4. Большая надежность при динамических и реверсивных нагрузках. 5. Большая усталостная прочность вследствие меньшей концентрации напряжений изгиба, особенно для эвольвентных шлицев. б. Меньшая длина ступицы и меньшие радиальные размеры.
Недостатки более сложная технология изготовления, а следовательно, и более высокая стоимость.
Различают шлицевые соединения неподвижные и подвижные с возможностью перемещения деталей вдоль оси под нагрузкой или без нагрузки. (Например, шлицевые соединения сверлильных шпинделей станков, карданных валов автомобилей и др.) Шлицевые (зубчатые) соединения стандартизованы. При данном диаметре соединения стандартами установлено число и размеры шлицев (зубьев), а также допуски на их размеры.
В машиностроении применяют прямобочные, эвольвентные и треугольные шлицы.
В настоящее время наиболее распространены давно применяемые прямобочные шлицевые соединения (около 80%) по ГОСТу 1139-80. В поперечном сечении профиль прямобочных шлицев очерчивается окружностью выступов зубьев D, окружностью впадин d, и прямыми, определяющими постоянную толщину зубьев b. Стандартом предусмотрены три серии соединений: легкая, средняя и тяжелая. С переходом от легкой к средней и тяжелой сериям при одном и том же внутреннем диаметре d, увеличивают наружный диаметр D и число зубьев z, что повышает несущую способность соединений. Соединения с прямобочными шлицами выполняют с центрированием по наружному диаметру D, по внутреннему диаметру d, и по боковым граням b.
При выборе способа центрирования руководствуются величиной и характером нагрузки на соединение, требованиями по точности центрирования деталей соединения. Несущую способность шлицевых соединений и износостойкость шлицев можно значительно увеличить повышением твердости рабочей поверхности (боковых граней) шлицев путем закалки их до высокой твердости. Однако после закалки происходит искажение сопрягаемых поверхностей, которое можно устранить лишь последующим шлифованием, которое не всегда можно выполнить. Наружное шлифование шлицевых валов по диаметру D выполняется легко; сложнее шлифовать отверстия в ступицах по диаметру d и боковые грани зубьев шлицевых валов; невозможно шлифовать боковые грани шлицев и впадины между шлицами по диаметру D у ступиц.
Наиболее надежным (но и более сложным в изготовлении) является соединение, в котором вал и ступица закалены до высокой твердости после нарезки зубьев. В этом случае для получения необходимой точности сопряжения ступицу и вал центрируют по диаметру d. Менее надежным, но и более простым в изготовлении является соединение, в котором отверстие ступицы не закалено и поэтому может быть окончательно получено протягиванием, а вал с предварительно нарезанными зубьями закаливается и шлифуется по наружному диаметру D. В этом случае центрирование осуществляют по D. И, наконец, самое простое в изготовлении, но и менее надежное центрирование по боковым поверхностям зубьев применяют в тихоходных механизмах при больших вращающих моментах. Вал и ступица в этом случае не закалены и зубья на них окончательно нарезают (протягивают) без шлифования.
Более перспективны соединения с эвольвентными зубьями (шлицами). Их выполняют с центрированием по боковым, рабочим поверхностям или по наружному диаметру; наиболее распространен первый способ центрирования из-за простоты его получения. Профиль эвольвентных шлицев очерчивается, как и профиль зубьев эвольвентных зубчатых колес, окружностью вершин, окружностью впадин и эвольвентами с углом зацепления 30° (у зубчатых колес 20°) при уменьшенной высоте зуба h = m (у зубчатых колес h = 2,25m). Размеры эвольвентных шлицев определяются по ГОСТу 6033-88.
Достоинства эвольвентных шлицевых соединений по сравнению с прямобочными: выше прочность на изгиб благодаря утолщению зубьев у основания; меньше концентрация напряжений, поэтому выше сопротивление усталости; выше прочность на смятие благодаря увеличенному числу зубьев; при производстве требуется меньшая номенклатура фрез, так как эвольвентные шлицы одинакового модуля можно нарезать одной фрезой или долбяком, в то время как при изготовлении прямобочных шлицев для каждого размера и числа зубьев требуется отдельная фреза; при обработке зубьев (шлицев) могут быть использованы совершенные технологические процессы, применяемые для изготовления зубьев зубчатых колес.
Недостатки: более дорогие эвольвентные протяжки для малых диаметров ступиц, шлифование эвольвентных шлицев более сложно, чем прямобочных.
Шлицевые соединения треугольного профиля применяют редко при стесненных габаритах в радиальном направлении. Эти соединения центрируют по боковым сторонам зубьев. Размеры шлицев треугольного профиля установлены отраслевыми стандартами (ОСТ) и нормалями. В основном их применяют в кинематических (приборных) механизмах. При необходимости беззазорного соединения применяют конические соединения треугольного профиля с конусностью 1: 16 на валу.
Критерии: 1) смятие 2) износ 3) возможен срез зубьев
Основными видами отказов шлицевых соединений являются смятие и износ рабочих поверхностей. Износ является следствием работы сил трения при взаимных микроперемещениях контактирующих поверхностей в процессе работы. Особенно большой износ в шлицевых соединениях наблюдается при скудной загрязненной смазке, больших напряжениях смятия. Износостойкость соединения повышают с помощью увеличения твердости контактирующих поверхностей закалкой, уменьшения зазоров между зубьями, а также применяя смазочный материал и хорошее уплотнение от загрязнения.
Расчет шлицевых соединений ведется по двум критериям: 1) смятие (если только присутствует вращающий момент) 2) износостойкость (если еще изгибающий момент и радиальные силы).
Упрощенный расчет на смятие:
Где k PH – коэффициент, учитывающий неравномерность распределения нагрузки между зубьями из-за ошибок изготовления, h – рабочая высота зубьев, l – рабочая длина зубьев.
Для прямобочного профиля:
Где f – величина фаски.
Соединение ступицы с валом вместо шпонки может осуществляться с помощью шлицов. Такое соединение ступицы с валом называется зубчатым или шлицевым.
В зависимости от формы профиля зубьев различают соединения с прямобочными, эвольвентными и треугольными зубьями (шлицами) (Рис. 5.5). Достоинства шлицевых соединений:
а) возможность передачи больших моментов благодаря значительно большей поверхности контакта соединяемых деталей и более равномерному распределению давления по этой поверхности;
б) более точное центрирование ступицы по валу,
в) лучшее направление при перемещении ступицы по валу,
г) большая прочность вала.
Рис. 5.5 Основные типы зубчатых (шлицевых) соединений:
а – прямобочное; б – эвольвентное; в – треугольное
Прямобочные (ГОСТ 1139-80) шлицевое соединение наиболее распространено. Соединение выполняется с центрированием ступицы: по боковым сторонам зубьев в , по наружному диаметру D , по внутреннему диаметру d (Рис. 5.6)
Центрирование по “ ” (Рис. 5.6, а ) не обеспечивает точной соосности ступицы и вала. Поэтому его рекомендуют при передачи больших моментов. Центрирование по “D ” и “d ” применяется, когда требуется точность совпадения осей соединяемых деталей (Рис. 5.6, б, в ).
Рис. 5.6 Виды центрирования прямобочных зубчатых
соединений: а – по боковым граням; б – по наружному диаметру; в – внутреннему диаметру; г – форма сечения ступицы;
д, е – форма сечений вала исполнений б, в
Эвольвентное шлицевое соединение (ГОСТ 6033-80) различают с центрированием ступицы по боковым сторонам “S ” (Рис. 5.7, а ) и по наружному диаметру “D ” (Рис. 5.7, б). Центрирование по “S ” наиболее распространено.
Достоинства эвольвентных шлицевых соединений: более высокая прочность зубьев, вследствие их утолщения к основанию; высокая технологичность и более низкая стоимость изготовления шлицевых валов.
Рис. 5.7 Эвольвентное зубчатое зацепление:
а – центрирование по боковым граням; б – центрирование
по наружному диаметру
Вследствие высокой стоимости протяжек для изготовления шлицев в ступицах малых и средних размеров – эвольвентные шлицевые соединения применяются реже прямобочных.
Таблица 7
Примеры обозначения шлицевых соединений
10 . Расчет шлицевого соединения.
Рис. 10 Схема шлицевого соединения с прямобочным профилем.
Где b – ширина зуба, D – наружный диаметр, d – внутренний диаметр, d m – средний диаметр шлицев.
Выбираем соединение средней серии с центрированием по наружному диаметру, числом зубьев z=6, внутренним диаметром d=32 мм, наружным диаметром D=36 мм, шириной зуба b=6 мм, посадкой по наружному диаметру – H7/js6, по внутреннему – H11/a11 и посадкой по размеру b – F8/f8. Фазка зуба f =0,4 мм. Средний диаметр d m =29 мм. Длина соединения l =152 мм .
Проверим это соединение по условным напряжениям на смятие и на изнашивание при 1-й скорости (т.е. при максимальном передаваемом моменте):
σ – касательное напряжение.
σ=2 × T × /(z × l × h × d m ), где d m – средний диаметр соединения, Т – момент на шлицевом валу, h – высота поверхности контакта зубьев.
Т=101,36 Н × м .
h=(D-d)/2-1,4 × f=(32-26)/2-1,4 × 0,4=2,44 мм.
σ=2 × 101,36 × 10 3 /(6 × 152 × 2,44 × 29) =3,141 МПа
Проверка на смятие: σ £ [ σ см ];
[ σ см ]= σ Т /([s] × K Д × К см ),
где σ Т =350 МПа (для стали 45) – предел текучести материала, [ s ]=1,25 – коэффициент запаса, К Д = T max / T н =2 – коэффициент динамичности нагрузки, Т max / T н – отношение пускового к номинальному моменту, К см – коэффициент учитывающий неравномерность распределения напряжений смятия по рабочим поверхностям зубьев.
К см =К П × К y × К b ,
где К П =1,2 – коэффициент погрешности изготовления, К y =1,5 – коэффициент, отражающий влияние радиальной силы на соединение, К b =2,1 – коэффициент, неравномерности распределения нагрузки по длине соединения.
К см =1,2 × 1,5 × 2,1=3,78
[σ см ] =350 / (1,25 × 2 × 3,78)=36,169 МПа
σ £ [ σ см ], условие выполняется.
Проверка на изнашивание: σ £ [ σ изн ] × K cE
Для получения [ σ изн ] вычислим параметр y, отражающий влияние радиальной силы в зацеплении:
y = d m × P r /(2T)=29 × 10 -3 × 0,5 × 590/101,36=0,084
и параметр e , отражающий влияние опрокидывающего момента M на ступицу.
M = P r × e , где e – плечо опрокидывающего момента, e = l /2- b ш /2 , b ш =55 мм – ширина шестерни. e =152/2-55/2=48,5 мм, M =590 × 48,5 × 10 -3 =28,615 Н × м.
e = M/(l × P r)=28,615/(152 × 10 -3 × 590)=0,319
В зависимости от твёрдости вала, а также параметров y и e выберем допускаемые усталостные напряжения при расчёте на изнашиваемость: [ σ изн ]=18 МПа
К cE – коэффициент, учитывающий число оборотов и режим нагрузки вычисляют по следующей формуле:
;
N i – число оборотов, которое сделает соединение, нагруженное данным моментом, N i =t×t i ×n×60; N 0 – базовое число циклов, равное 10 8 ; t i – доля от общего времени работы под данной нагрузкой.
t=3506 ч – общее время работы привода.
К cE =0,973. Следовательно: σ =3,141<[ σ изн ] × K cE =18 × 0,973=17,514, условие выполняется, соединение работоспособно.