При определении критериев свариваемости металлов и их сплавов ориентируются на следующие их свойства:
- чувствительность металла к тепловому воздействию, которое создается при сварке;
- склонность металла к росту зерна с сохранением пластических и прочностных свойств, структурным и фазовым изменениям в зоне термического воздействия;
- химическая активность металла, влияющая на его окисляемость при термическом воздействии сварочного процесса;
- сопротивляемость металла к образованию пор и трещин в холодном и горячем состоянии.
Большое влияние на качество сталей оказывает так называемая их раскисляемость, которая характеризуется содержанием марганца, кремния и некоторых других элементов и равномерностью их распределения. По этому параметру различают три вида стал ей: кипящая — «кп», полуспокойная — «пс» и спокойная — «сп».
Кипящая сталь отличается большой неравномерностью распределения вредных примесей (особенно серы и фосфора) по толщине проката и получается при неполном раскислении металла марганцем. Характерной особенностью этого вида сталей является склонность к старению и образование кристаллизационных трещин в шве и околошовной зоне, что приводит к переходу в хрупкое состояние при отрицательных температурах.
Спокойная сталь получается при равномерном распределении примесей, поэтому она менее склонна к старению и меньше реагирует на сварочный нагрев. Полуспокойная сталь занимает промежуточное значение между кипящей и спокойной.
Все эти свойства учитывают при выборе технологических приемов сварки, способов формирования сварочного шва, параметров теплового воздействия и т.д.
В качестве примера приведем свариваемость сталей, как наиболее распространенных конструктивных материалов.
Для сварных конструкций лучше всего использовать низкоуглеродистые и низколегированные стали, обладающие высокой степенью свариваемости. Наибольшее влияние на качество сварного соединения оказывает углерод. Увеличение содержания углерода и ряда других легирующих элементов снижает свариваемость сталей, ухудшая качество шва. Сварные соединения высокоуглеродистых и высоколегированных сталей отличаются повышенным содержанием трещин и выполняются по специальной технологии.
Классификация сталей по свариваемости
Группа по свариваемости | Марка стали | |
Углеродистая | Конструкционная легированная | |
1 .Хорошая | Ст.1;Ст.2;Ст.З; Ст. 4;0, 8; сталь 10,15,20,25; 12кп, 15кп, 1бкп, 20кп | 15Г,- 20Г; 15Х;1 5ХА; 20Х; 15ХМ; 14ХГС; 10ХСМД; 10ХГСМД,15ХСМД |
2. удовлетворительная | Ст5,- стальЗ0, 35 | 12ХМ2; 12ХНЗА;14Х2Ж; 10Г2МП; 20ХНЗА; 20ХН; 20ХГСА; 25ХГСА; З0Х, 30ХМ |
3.Ограниченная | Стб; сталь40, 45, 50 | 35Г; 40Г; 45Г; 40Г2,- 35Х,- 40Х; 45Х; 40ХН; 40; 40ХМФЙ,» ЗОХГС; ЗОХГСА; зохгсм,- 35ХМ; 20Х2Н4А; 4ХС; 12Х2Н4МА |
4 .Плохая | сталь65, 70, 75, 80, 85, У7, У8, У9, У10, У11, У12 | 50Г; 50Г2; 50Х; 50ХН; 45ХНЗМФА; 6Хс; 7X3,- 9ХС; 8X3; 5ХНТ; 5ХНВ |
Примечание: Стали, относящиеся к хорошим, имеют содержание углерода менее 0,25%. Они хорошо свариваются без образования закалочных структур и трещин в широком диапазоне режимов сварки.
Стали, относящиеся к удовлетворительным, имеют содержание углерода от 0,25 до 0,35%. Они мало склонны к образованию трещин и при правильно подобранных режимах сварки дают качественный шов. Для улучшения качества сварки часто применяют подогрев.
Ограниченно свариваемые стали имеют содержание углерода от 0,36 до 0,45% и склонны к образованию трещин. Сварка требует обязательного подогрева. Плохо свариваемые стали содержат углерод в количестве более 0,45%. При их сварке требуются специальные технологические процессы.
Легирование стали одним или несколькими легирующими элементами придает ей определенные физико-механические свойства. Как правило, повышение уровня легирования и прочности стали приводит к ухудшению ее свариваемости и первостепенная роль в этом принадлежит углероду.
Низколегированные стали хорошо свариваются всеми способами плавления. Получение же при сварке равнопрочного сварного соединения, особенно у термоупрочненных сталей, вызывает определенные трудности. В зонах, удаленных от высокотемпературной области, возникает холодная пластическая деформация. При наложении последующих швов эти зоны становятся участками деформационного старения. Это в конечном итоге приводит к снижению пластических и повышению прочностных свойств металла и соответственно к появлению холодных трещин. В среднелегированных сталях увеличивается склонность к закалке, в связи с чем такие стали имеют высокую чувствительность к термическому циклу сварки. Их околошовная зона оказывается резко закаленной, а следовательно, и непластичной при всех режимах сварки, обеспечивающих удовлетворительное формирование шва. Поэтому с целью снижения скорости охлаждения околошовной зоны при сварке этих сталей необходим предварительный подогрев свариваемого изделия.
При сварке высоколегированных хромистых 08X13, 08Х17Т и некоторых других сталей существуют отличительные особенности:
- высокий порог хладноломкости стали, находящийся обычно в области положительных температур;
- склонность к значительному охрупчиванию в околошовной зоне;
- низкая пластичность и вязкость металла шва, выполненного сварочными материалами аналогичного со сталью химического состава;
- невозможность устранить охрупчивание термообработкой.
Сварку таких сталей необходимо выполнять с минимальным тепловложением, так как с увеличением погонной энергии возрастает склонность зон сварного соединения к росту зерен, появлению микротрещин и падению пластичности. При этом снижается сопро-тивляемость сварного соединения локальным повреждениям и межкристаллической коррозии. В процессе сварки возникает опасность коробления и появляется повышенный уровень остаточных напряжений. После сварки в ряде случаев требуется термообработка.
Окисляемость металла под термическим действием сварочной дуги определяется его химической активностью. От этого напрямую зависит степень защиты сварочного шва, применяемого при сварке. Чем выше химическая активность металла, тем качественнее должна быть защита. Наибольшей химической активностью отличаются титан, ниобий, цирконий, вольфрам, молибден, тантал и некоторые другие. Поэтому при сварке этих металлов недостаточно применение флюсов и защитных покрытий, так как в защите нуждаются не только сварочный шов, но и прилегающая к нему область. Самой эффективной защитой в данном случае служит сварка в вакууме или в среде инертного газа высокой чистоты.
Сварка остальных цветных металлов (меди, алюминия, магния, никеля и их сплавов) тоже требует высокой защиты, которую обеспечивают инертные газы, флюсы и специальные электродные покрытия. Для сварки сталей и сплавов на основе железа в качестве защитных средств используют флюсы и электродные покрытия.
Свариваемость сталей
ГОСТ | Марки стали | Заменитель | Свариваемость |
---|---|---|---|
380-94 | Ст0 | Сваривается без ограничений | |
Ст2кп Ст2пс Ст2сп | Ст2сп Ст2пс | ||
Ст3кп | Ст3пс | Сваривается без ограничений. Для толщины более 36 мм рекомендуется подогрев и последующая термообработка | |
Ст3пс Ст3сп | Ст3сп Ст3пс | Сваривается без ограничений. Для толщины более 36 мм рекомендуется подогрев и последующая термообработка | |
Ст3Гпс | Ст3пс Сталь 18Гпс | Сваривается без ограничений. Для толщины более 36 мм рекомендуется подогрев и последующая термообработка | |
Ст4кп | |||
Ст4пс | Ст4сп | Сваривается ограниченно | |
Ст5пс Ст5сп | Ст6сп Ст4сп | ||
Ст6пс | Сваривается ограниченно. Рекомендуется подогрев и последующая термообработка | ||
Ст6сп | Ст5сп | Сваривается ограниченно. Рекомендуется подогрев и последующая термообработка | |
801-78 | ШХ15 | Стали: ШХ9, ШХ12, ШХ15СГ | Способ сварки КТС |
ШХ15СГ | Стали: ХВГ, ШХ15, 9ХС, ХВСГ | Способ сварки КТС | |
ШХ4 | Способ сварки КТС | ||
1050-88 | 08 | Сталь 10 | |
08кп 08пс | Сталь 08 | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
10 | Стали: 08, 15, 08кп | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
10кп 10пс | Стали: 08кп, 15кп, 10 | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
15 | Стали: 10, 20 | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
15кп 15пс | Стали: 10кп, 20кп | Сваривается без ограничений | |
18кп | Сваривается без ограничений | ||
20 | Сталь: 15, 20 | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
20кп 20пс | Сталь: 15кп | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
25 | Сталь: 20, 30 | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
30 | Стали: 25, 35 | Сваривается ограниченно. Рекомендуется подогрев и последующая термообработка | |
35 | Стали: 30, 40, 35Г | Сваривается ограниченно. Рекомендуется подогрев и последующая термообработка | |
40 | Стали: 35, 45, 40Г | Сваривается ограниченно. Рекомендуется подогрев и последующая термообработка | |
45 | Стали: 40Х, 50, 50Г2 | ||
50 | Стали: 45, 50Г, 50Г2, 55 | Трудносвариваемая. Необходим подогрев и последующая термообработка | |
55 | Стали: 50, 60, 50Г | ||
58 (55пп) | Стали: 30ХГТ, 20ХГНТР, 20ХН2М, 12ХНЗА, 18ХГТ | Не применяется для сварных конструкций | |
1414-75 | А20 | Сталь А12 | Не применяется для сварных конструкций |
А30 А40Г | Сталь: А40Г | Не применяется для сварных конструкций | |
1435-90 | У7, У7А | Сталь: У8 | Не применяется для сварных конструкций |
У8, У8А | Сталь: У7, У7А У10, У10А | Не применяется для сварных конструкций | |
У9, У9А | Стали: У7, У7А, У8, У8А | Не применяется для сварных конструкций | |
У10, У10А | Стали: У10, У10А | Не применяется для сварных конструкций | |
4543-71 | 15Х | Сталь: 20Х | Сваривается без ограничений, кроме деталей после химико-термической обработки |
20Х | Сталь: 15Х, 20ХН, 18ХГТ | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
30Х | Сталь: 35Х | Ограниченно сваривается | |
35Х | Сталь: 40Х | Ограниченно сваривается | |
38ХА | Сталь: 40Х, 35Х | Трудно-свариваемая | |
40Х | Сталь: 45Х, 35ХА, 40ХС | ||
45Х | Сталь: 40Х, 45Х, 50ХН | Трудно-свариваемая, необходим подогрев и последующая термообработка | |
50Х | Сталь: 40Х, 45Х, 50ХН | Трудно-свариваемая, необходим подогрев и последующая термообработка | |
15Г 20Г | Сталь: 20Г, 20, 30Г | Хорошо свариваемая | |
30Г | Сталь: 35, 40Г | ||
35Г | Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка | ||
40Г | Стали: 45, 40Х | Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка | |
45Г | Стали: 40Г, 50Г | ||
50Г | Стали: 40Г, 50 | Трудно-свариваемая. Рекомендуется подогрев и последующая термообработка. | |
10Г2 | Сталь: 09Г2 | Сваривается без ограничений. | |
35Г2 | Сталь: 40Х | ||
40Г2 | Сталь: 45Г2, 60Г | Трудно-свариваемая. Требуется подогрев и последующая термообработка. | |
45Г2 | Сталь: 50Г2 | Трудно-свариваемая. Требуется подогрев и последующая термообработка. | |
50Г2 | Сталь: 45Г2, 60Г | Не применяется для сварных конструкций | |
47ГТ | Сталь: 40ХГРТ | Не применяется для сварных конструкций | |
18ХГТ 25 | Сталь: 30ХГТ, 25ХГТ, 12ХН3А, 12Х2Н4А, 20ХН2М, 20ХГР | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
20ХГР | Сталь: 20ХН3А, 20ХН24, 18Х1Т, 12ХН2, 12ХН3А | Сваривается без ограничений, кроме деталей после химико-термической обработки | |
25Х1Т | Сталь: 18ХГТ, 30ХГТ, 25ХГМ | Требуется последующая термообработка | |
30ХГТ | Сталь: 18ХГТ, 20ХН2М, 25ХГТ, 12Х2Н4А | Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка | |
33ХС | Трудно-свариваемая | ||
38ХС 40ХС | Сталь: 40ХС, 38ХС, 35ХГТ | Трудно-свариваемая | |
15ХФ | Сталь: 20ХФ | Сваривается без ограничений (способ КТС) | |
40ХФА | Сталь: 40Х, 65Г, 50ХФА, 30Х3МФ | Трудно-свариваемая. Требуется подогрев и последующая термообработка. | |
15ХМ | Сваривается без ограничений. Рекомендуется подогрев и последующая термообработка | ||
30ХМ 30ХМА | Сталь: 35ХМ, 35ХРА | Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка | |
35ХМ | Сталь: 40Х, 40ХН, 30ХН, 35ХГСА | Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка | |
38ХН | Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка | ||
20ХН | Сталь: 15ХГ, 20ХНР, 18ХГТ | Ограниченно свариваемая | |
40ХН | Сталь: 45ХН, 50ХН, 38ХГН, 40Х, 35ХГФ, 40ХНР, 40ХНМ, 30ХГВТ | ||
45ХН | Сталь: 40ХН | Трудно-свариваемая. Рекомендуется подогрев и последующая термообработка | |
50ХН | Сталь: 40ХН, 60ХГ | Не применяется для сварных конструкций | |
20ХНР | Сталь: 20ХН | ||
12ХН2 | Сталь: 20хнр, 20ХГНР, 12ХН3А, 18ХГТ, 20ХГР | термообработка. | |
12ХН3А | Сталь: 12ХН2, 20ХН3А, 25ХГТ, 12Х2НА, 20ХНР | Ограниченно свариваемая. Требуется подогрев и последующая термообработка. | |
20ХН3А | Сталь: 20ХГНР, 20ХНГ, 38ХА, 20ХГР | Ограниченно свариваемая. Требуется подогрев и последующая термообработка. | |
12Х2Н4А | Сталь: 20ХГНР, 12ХН2, 20ХГР, 12ХН3А, 20Х2Н4А | Ограниченно свариваемая. Требуется подогрев и последующая термообработка. | |
20Х2Н4А | Сталь: 20ХГНР, 20ХГНТР | Ограниченно свариваемая. Требуется подогрев и последующая термообработка. | |
30ХН3А | Сталь: 30Х2ГН2, 34ХН2М | Ограниченно свариваемая. Требуется подогрев и последующая термообработка. | |
20ХГСА | Сталь: 30ХГСА | Сваривается без ограничений | |
25ХГСА | Сталь: 20ХГСА | Сваривается без ограничений | |
30ХГС, 30ХН2МА | Сталь: 40ХФА, 35ХМ, 40ХН, 35ХГСА | Ограниченно свариваемая. Требуется подогрев и последующая термообработка. | |
38Х2Н2МА | Не применяется для сварных работ | ||
40ХН2МА | Сталь: 40ХГТ, 40ХГР, 30Х3МФ, 45ХН2МФА | ||
40Х2Н2МА | Сталь: 38Х2Н2МА | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
38ХН3МА | Сталь: 38ХН3ВА | Не применяется для сварных конструкций | |
18Х2Н4МА | Сталь: 20Х2Н4А | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
30ХГСА | Сталь: 40ХФА, 35ХМ, 40ХН, 25ХГСА, 35ХГСА | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
35ХГСА | Сталь: 30ХГС, 30ХГСА, 30ХГТ, 35ХМ | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
30ХГСН2А | Трудно-свариваемая. Необходим подогрев и последующая термообработка | ||
38ХГН | Сталь: 38ХГНМ | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
20ХГНР | Сталь: 20ХН3А | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
20ХН2М | Сталь: 20ХГР, 15ХР, 20ХНР, 20ХГНР | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
30ХН2МФА | Сталь: 30ХН2ВФА | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
36Х2Н2МФА | Трудно-свариваемая | ||
38ХН3МФА | Не применяется для сварных конструкций | ||
45ХН2МФА | Трудно-свариваемая. Необходим подогрев и последующая термообработка | ||
20ХН4ФА | Сталь: 18Х2Н4МА | Не применяется для сварных конструкций | |
38Х2МЮА | Сталь: 38Х2ЮА, 38ХВФЮ, 38Х2Ю, 20Х3МВФ | Не применяется для сварных конструкций | |
5520-79 | 16К 18К | Сваривается без ограничений | |
20К | Сваривается без ограничений | ||
22К | Ограниченно свариваемая. Рекомендуется подогрев и последующая термообработка | ||
5632-72 | 40Х9С2 | Не применяется для сварных конструкций | |
40Х10С2М | Трудно-свариваемая. Необходим подогрев и последующая термообработка | ||
08Х13 12Х13 20Х13 25Х13Н2 | Сталь: 12Х13, 12Х18Н9Т Сталь: 20Х13 Сталь: 12Х13, 14Х17Н2 | Ограниченно свариваемая. Подогрев и термообработка применяются в зависимости от метода сварки, вида и назначения конструкций | |
30Х13 40Х13 | Не применяется для сварных конструкций | ||
10Х14АГ16 | Сталь: 12Х18Н9, 08Х18Н10, 12Х18Н9Т, 12Х18Н10Т | Сваривается без ограничений | |
12Х17 | Сталь: 12Х18Н9Т | Не рекомендуется для сварных конструкций. Трудно-свариваемая | |
08Х17Т, 08Х18Т1 | Сталь: 12Х17, 08Х18Т1, 08Х17Т | Ограниченно свариваемая | |
95Х18 | Не применяется для сварных конструкций | ||
15Х25Т | Сталь: 12Х18Н10Т | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
15Х28 | Сталь: 15Х25Т, 20Х23Н18 | Трудно-свариваемая. Необходим подогрев и последующая термообработка | |
20Х23Н13 | Ограниченно свариваемая | ||
20Х23Н18 | Сталь: 10Х25Т, 20Х23Н13 | Ограниченно свариваемая | |
10Х23Н10 | Ограниченно свариваемая | ||
20Х25Н20С | Ограниченно свариваемая | ||
15Х12ВНМФ | Трудно-свариваемая | ||
20Х12ВНМФ | Сталь: 15Х12ВНМФ, 18Х11МНФБ | Трудно-свариваемая | |
37Х12Н8Г2МФБ | Ограниченно свариваемая | ||
13Х11Н2В2МФ | Ограниченно свариваемая | ||
45Х14Н14В2М | Трудно-свариваемая | ||
40Х15Н7Г7Ф2МС | Трудно-свариваемая | ||
08Х17Н13М21 | Сталь: 10Х17Н13М21 | Хорошо свариваемая | |
10Х17Н3М2Т | Хорошо свариваемая | ||
31Х19Н9МВБТ | Трудно-свариваемая | ||
10Х14Г14Н4Т | Сталь: 20Х13Н4Г9, 12Х18Н9Т, 12Х18Н10Т, 08Х18Н10Т | Сваривается удовлетворительно | |
14Х17Н2 | Сталь: 20Х17Н2 | Хорошо свариваемая | |
12Х18Н9 17Х18Н9 | Сталь: 20Х13Н4Г9, 10Х14Г14Н4Т, 20Х13Н4Г9 | Сваривается без ограничений | |
08Х18Н10 08Х18Н10Т 12Х18Н9Т 12Х18Н10Т | Сталь: 12Х18Н10Т, Сталь: 15Х25Т, 08Х18Г8Н2Т, 10Х14Г14Н4Т, 08Х17Т | Сваривается без ограничений | |
12Х18Н12Т | Сталь: 12Х18Н9, 12Х18Н9Т, 12Х18Н10Т | Ограниченно сваривается | |
08Х18Г8Н2Т | Сталь: 12Х18Н9 | Сваривается без ограничений | |
20Х20Н14С2 | Сваривается без ограничений | ||
12Х25Н16Г7АР | Сваривается без ограничений | ||
08Х22Н6Т | Сталь: 12Х18Н9Т, 12Х18Н10Т, 08Х18Н10Т | Сваривается без ограничений | |
06ХН28МДТ | Сплав: 03ХН28МДТ | Сваривается без ограничений | |
ХН35ВТ | Трудно-свариваемая | ||
ХН35ВТЮ | Трудно-свариваемая | ||
ХН70Ю | Ограниченно сваривается | ||
ХН70ВМЮТ | Трудно-свариваемая | ||
ХН70ВМТЮФ | Трудно-свариваемая | ||
ХН77ТЮР | Трудно-свариваемая | ||
ХН78Т | Сплав: ХН38Т, Сталь: 12Х25Н16Г7АР, 20Х23Н18 | Трудно-свариваемая | |
ХН80ТБЮ | Трудно-свариваемая | ||
5781-82 | 20ХГ2Ц | Сваривается без ограничений | |
35ГС 25Г2С | Сталь: Ст5сп, Ст6, Ст5пс | Сваривается без ограничений | |
5950-73 | ХВ4Ф | Не применяется для сварных конструкций | |
9Х1 | Сталь: 9х2 | Не применяется для сварных конструкций | |
9ХС | Сталь: ХВГ | Не применяется для сварных конструкций | |
ХВГ | Сталь: 9ХС, 9ХВГ, ШХ15СГ | Не применяется для сварных конструкций | |
9ХВГ | Сталь: ХВГ | Не применяется для сварных конструкций | |
Х6ВФ | Сталь: Х12Ф1, Х12М, 9Х5Ф | Не применяется для сварных конструкций | |
Х12, Х12ВМФ | Сталь: Х12МФ | Не применяется для сварных конструкций | |
Х12МФ Х12Ф1 | Сталь: Х6ВФ, Х12Ф1, Х12ВМФ Сталь: Х6ВФ, Х6ВФМ | Не применяется для сварных конструкций | |
7ХГ2ВМФ | Не применяется для сварных конструкций | ||
7Х3 8Х3 | Сталь: 8Х3 Сталь: 7Х3 | Не применяется для сварных конструкций | |
5ХНМ | Сталь: 5ХНВ, 5ХГМ, 4ХМФС, 5ХНВС, 4Х5В2ФС | Не применяется для сварных конструкций | |
5ХГМ | Сталь: 5ХНМ, 5ХНВ, 6ХВС, 5ХНС, 5ХНСВ | Не применяется для сварных конструкций | |
4ЗМФС | Не применяется для сварных конструкций | ||
4Х5МФС | Не применяется для сварных конструкций | ||
4ХМФ1С | Не применяется для сварных конструкций | ||
3Х3МХФ | Не применяется для сварных конструкций | ||
6ХС | Не применяется для сварных конструкций | ||
4ХВ2С | Сталь: 4Х5В2ФС, 4Х3В2М2 | Не применяется для сварных конструкций | |
5ХВ2СФ 6ХВ2С | Сталь: 6ХВ2С Сталь: 6ХЗФС | Не применяется для сварных конструкций | |
6ХВГ | Не применяется для сварных конструкций | ||
9045-80 | 08Ю | Сваривается без ограничений | |
14959-79 | 65 70 | Сталь: 60, 70 65Г | Не применяется для сварных конструкций |
75 | Сталь: 70, 80, 85 | Не применяется для сварных конструкций | |
85 | Сталь: 70, 75, 80 | Не применяется для сварных конструкций | |
60Г | Сталь: 65Г | Не применяется для сварных конструкций | |
65Г | Сталь: 70, У8А, 70Г, 60С2А, 9ХС, 50ХФА, 60С2, 55С2 | Не применяется для сварных конструкций | |
55С2 | Сталь: 50С2, 60С2, 35Х2АФ | Не применяется для сварных конструкций | |
60С2 60С2А | Сталь: 55С2, 50ХФА, 60С2Н2А, 60С2Г, 50ХФА | Не применяется для сварных конструкций | |
70С3А | Не применяется для сварных конструкций | ||
55ХГР | Не применяется для сварных конструкций | ||
50ХФА | Сталь: 60С2А, 50ХГФА, 9ХС | Не применяется для сварных конструкций | |
60С2ХА | Сталь: 60С2ХФА, 60С2Н2А | Не применяется для сварных конструкций | |
60С2ХФА | Сталь: 60С2А, 60С2ХА, 9ХС, 60С2ВА | Не применяется для сварных конструкций | |
65С2ВА | Сталь: 60С2А, 60С2ХА | Не применяется для сварных конструкций | |
60С2Н2А | Сталь: 60С2А, 60С2ХА | Не применяется для сварных конструкций | |
19265-73 | Р18 | ||
Р6М5К5 | При стыковой электросварке со сталью 45 и 40Х свариваемость хорошая | ||
Р9М4К8 | При стыковой электросварке со сталью 45 и 40Х свариваемость хорошая | ||
19281-89 | 09Г2 | Сталь: 09Г2С, 10Г2 | Сваривается без ограничений |
14Г2 | Сталь: 15ХСНД | Ограниченно свариваемая | |
12ГС | Сталь: 15ГС | Сваривается без ограничений | |
16ГС | Сталь: 17ГС | Сваривается без ограничений | |
17ГС | Сталь: 16ГС | Сваривается без ограничений | |
17Г1С | Сталь: 17ГС | Сваривается без ограничений | |
09Г2С | Сталь: 10Г2С, 09Г2 | Сваривается без ограничений | |
10Г2С1 | Сталь: 10Г2С1Д | Сваривается без ограничений | |
10Г2БД | Сталь: 10Г2Б | Сваривается без ограничений | |
15Г2СФД | Сваривается без ограничений | ||
14Г2АФ | Сталь: 16Г2АФ | Сваривается без ограничений | |
16Г2АФ | Сталь: 14Г2АФ | Сваривается без ограничений | |
18Г2ФАпс | Сталь: 15Г2ФАДпс, 16Г2АФ, 10ХСНД, 15ХСНД | Сваривается без ограничений | |
14ХГС | Сталь: 15ХСНД, 16ГС | Сваривается без ограничений | |
15Г2АФДпс | Сталь: 16Г2АФ, 18Г2АФпс, 10ХСНД | Сваривается без ограничений | |
10ХСНД | Сталь: 16Г2АФ | Сваривается без ограничений | |
10ХНДП | Сваривается без ограничений | ||
15ХСНД | Сталь: 16Г2АФ, 14ХГС, 16ГС | Сваривается без ограничений | |
20072-72 | 12МХ | ||
12Х1МФ | Сваривается без ограничений. Рекомендуется подогрев и последующая термическая обработка | ||
25Х1МФ | Сваривается без ограничений. Рекомендуется подогрев и последующая термическая обработка | ||
20Х3МВФ | Сваривается без ограничений. Рекомендуется подогрев и последующая термическая | ||
15Х5М | Сваривается без ограничений. Рекомендуется подогрев и последующая термическая обработка |
Литература
- ГОСТ 380-94 Сталь углеродистая обыкновенного качества. Марки
- ГОСТ 801-78 Сталь подшипниковая. Технические условия
- ГОСТ 1050-88 Прокат сортовой, калиброванный, со специальной отделкой поверхности из углеродистой качественной конструкционной стали. Общие технические условия
- ГОСТ 1414-75 Прокат из конструкционной стали высокой обрабатываемости резанием. Технические условия
- ГОСТ 1435-90 Прутки, полосы и мотки из инструментальной нелегированной стали. Общие технические условия
- ГОСТ 4543-71 Прокат из легированной конструкционной стали. Технические условия
- ГОСТ 5520-79 Прокат листовой из углеродистой, низколегированной и легированной стали для котлов и сосудов, работающих под давлением. Технические условия
- ГОСТ 5632-72 Стали высоколегированные и сплавы коррозионностойкие, жаростойкие и жаропрочные. Марки
- ГОСТ 5781-82 Сталь горячекатаная для армирования железобетонных конструкций. Технические условия
- ГОСТ 5950-73 Прутки и полосы из инструментальной легированной стали. Технические условия
- ГОСТ 9045-93 Прокат тонколистовой холоднокатаный из низкоуглеродистой качественной стали для холодной штамповки. Технические условия
- ГОСТ 14959-79 Прокат из рессорно-пружинной углеродистой и легированной стали. Технические условия
- ГОСТ 19265-73 Прутки и полосы из быстрорежущей стали. Технические условия
- ГОСТ 19281-89 Прокат из стали повышенной прочности. Общие технические условия
- ГОСТ 20072-74 Сталь теплоустойчивая
- Сварка, резка и пайка металлов / К.К. Хренов. М., Машиностроение, 1970, 408 с.
- Справочник конструктора–машиностроителя. Т.3 / В.И. Анурьев. М.: Машиностроение. 2000. 859 с.
- Марочник сталей и сплавов / В.Г. Сорокин, А.В. Волосникова. – М.: Машиностроение, 1989. – 640 с.
- Инструментальные стали. Справочник / Л.А. Позняк. М., Металлургия, 1977, 168 с.
Свариваемость — комплексная технологическая характеристика, отражающая реакцию свариваемых материалов на технологический процесс сварки, и возможность получения сварных соединений, удовлетворяющих условиям эксплуатации.
Три группы факторов, определяющих свариваемость:
1.Химический состав и структура металла, наличие примесей, степень раскисления, предшествующие операции изготовления (ковка, прокатка, термообработка) деталей.
2.Сложность формы и жесткость конструкции, масса и толщина металла, последовательность выполнения сварных швов.
3.Технологический фактор: вид сварки и сварочные материалы, режимы термических воздействий на основной материал.
Степень свариваемости это качественная или количественная характеристика ответа на вопросы:«Как изменяются свойства металла при сварке?», «Выполнимо ли сварное соединение?».
Основной характеристикой свариваемости является отсутствие холодных или горячих трещин при сварке.
По свариваемости стали подразделяют на четыре группы: первая группа — хорошо сваривающиеся; вторая группа — удовлетворительно сваривающиеся; третья группа — ограниченно сваривающиеся; четвертая группа — плохо сваривающиеся.
Основные признаки, характеризующие свариваемость сталей,- склонность к образованию трещин и механические свойства сварного соединения.
К первой группе относятся стали, сварка которых может быть выполнена по обычной технологии, т. е. без подогрева до сварки и в процессе сварки и без последующей термообработки. Однако применение термообработки для снятия внутренних напряжений не исключается.
Ко второй группе относят в основном стали, при сварке которых в нормальных производственных условиях трещин не образуется. В эту же группу входят стали, которые для предупреждения образования трещин нуждаются в предварительном нагреве, а также в предварительной и последующей термообработке.
К третьей группе относят стали, склонные в обычных условиях сварки к образованию трещин. При сварке их предварительно подвергают термообработке и подогревают. Кроме того, большинство сталей, входящих в эту группу, подвергают обработке после сварки.
К четвертой группе относят стали, наиболее трудно поддающиеся сварке и склонные к образованию трещин. Эти стали свариваются ограниченно, поэтому сварку их выполняют с обязательной предварительной термообработкой, с подогревом в процессе сварки и последующей термообработкой.
Сварочные преобразователи: устройство, регулировка
Сварочного тока, технические характеристики, схемы
Включения.
Для ручной дуговой сварки и сварки на автоматах, снабженных авторегуляторами напряжения, автоматически воздействующими на скорость подачи электродной проволоки, требуются источники питания с падающими внешними характеристиками. Для питания автоматов и полуавтоматов с постоянной скоростью подачи электродной проволоки, в том числе для сварки в углекислом газе и порошковой проволокой СП-2, необходимы генераторы с жесткими внешними характеристиками. Поскольку на заводах и монтажных площадках механизированные методы сварки используются в сочетании с ручной дуговой сваркой, требуются универсальные источники, обеспечивающие как падающие, так и жесткие внешние характеристики. Для этой цели разработана конструкция универсального сварочного преобразователя ПСУ-300, генератор которого имеет одну обмотку возбуждения. Внешние характеристики в этом генераторе создаются с помощью триода ПТ, включенного в цепь обмотки возбуждения ОВ, и обратной связи по току нагрузки (рис. 108). Он является четырех полюсным генератором постоянного тока нормального исполнения, его обмотка возбуждения ОВ размещена на четырех главных полюсах и питается от устройства управления, размещенного на корпусе преобразователя.
Рис. 108. Упрощенная электрическая схема универсального преобразователя ПСУ-300
Сварочная цепь и цепь обмотки возбуждения связаны между собой стабилизирующим трансформатором Тр, предназначенным для обеспечения динамических свойств генератора.
Величину сварочного тока регулируют реостатом – регулятором ДП, установленным на передней стенке управления. По мере роста сварочного тока сопротивление триода возрастает, ток возбуждения уменьшается, уменьшается и эдс генератора, т. е. характеристика получается падающей. При переключении цепей управления внешняя характеристика становится жесткой. Основные технические данные универсальных преобразователей даны в табл. 32.
32. Основные технические данные универсальных преобразователей
Выполнить практическое задание (устно):
3. Подготовка, сборка, прихватка и сварка трёх полос металла длиной 80 см, толщиной 16 мм (изготовление швеллера).
Ответить на теоретические вопросы.
Свариваемость – это реакция свариваемых металлов и сплавов на процесс сварки. Она определяет технологическую сторону процесса и эксплуатационную пригодность изделия.
Расплавление и кристаллизация металла в условиях сварки представляют собой сложный металлургический процесс, протекающий при неравномерном нагреве, перегреве и охлаждении металла в местах соединения заготовок. Процесс сопровождается структурными превращениями и перекристаллизацией металла. Это во многом определяет качество и надежность сварного соединения, т.е. совокупность приобретаемых свойств шва, которые обусловливают пригодность соединений и возможность использования сварной конструкции в технике.
На свариваемость стали большое влияние оказывает ее химический состав .
Углерод – это важный элемент химического состава стали, определяющий ее свариваемость, прочность, вязкость, закаливаемость. Хорошо свариваются стали, содержащие не более 0,25% углерода. При более высоком его содержании, свариваемость стали, резко ухудшается, так как в нагретой околошовной зоне — термического влияния, образуются структуры закалки, приводящие к возникновению горячих и холодных трещин.
Сера – вредная примесь, образующая легкоплавкие соединения с железом, которые располагаются по границам зерен, ослабляя связь между ними с возникновением трещин в горячем состоянии. Это явление вызывается красноломкостью металла. Поэтому во избежание трещин в сварном шве содержание серы в свариваемых сталях должно быть менее 0,045%.
Фосфор – тоже вредная примесь. В сталях он вызывает появление хрупких структур, особенно при отрицательных температурах. Этот процесс называется хладноломкостью . Содержание фосфора в свариваемых сталях и сварных швах должно быть менее 0, 04%.
Марганец – это элемент химического состава стали, несколько повышающий прочность и упругость стали. При его содержании в сталях в пределах 0,3…0,8% процесс сварки не затрудняется. При содержании же марганца более 1,8% возникает опасность появления хрупкости и трещин, в связи с закаливаемостью такой стали.
Кремний несколько повышает прочность, упругость и твердость стали. При его содержании до 0,2…0,3%, свариваемость не ухудшается. При содержании более 0,8% условия сварки ухудшаются из-за высокой жидкотекучести стали и образования тугоплавких окислов кремния.
Хром повышает прочность, упругость и твердость стали, но при сварке образует карбиды хрома, ухудшающие коррозионную стойкость шва и прилегающую к нему околошовную зону. Он резко повышает твердость металла в этой зоне термического влияния и увеличивает вероятность возникновения трещин, способствует образованию тугоплавких окислов, затрудняющих процесс сварки. В подлежащих сварке безникелевых сталях содержание хрома не должно превышать 0,3%.
Молибден способствует измельчению кристаллов (зерен стали), повышает прочность стали. Особенно это важно при ударных нагрузках и высоких температурах, но молибден вызывает появление трещин в наплавленном металле и в зоне термического влияния. В процессе сварки молибден активно окисляется и выгорает. В ответственных сварных конструкциях содержание молибдена не должно превышать 1%.
Ванадий способствует закаливаемости стали, чем, затрудняет сварку; он активно окисляется и выгорает. В ответственных сварных конструкциях содержание ванадия не должно превышать 1%.
Вольфрам увеличивает твердость стали и ее износостойкость при высоких температурах (красностойкость), но затрудняет процесс сварки ввиду сильного окисления. В состав стали, подлежащей сварке, вольфрам не вводится.
Кислород активно окисляет расплавленное железо, образуя хрупкие структуры, он окисляет и легирующие элементы. Расплавленный металл сварного шва необходимо защищать от взаимодействия с кислородом воздуха. Это является одной из функций электродного покрытия, которое при сгорании выделяет защитный (углекислый) газ. Для защиты от окисления сварку ответственных конструкций из нержавеющих сталей и цветных металлов осуществляют в таких защитных газах, как аргон, гелий.
Водород. При сварке атомы водорода легко растворяются в расплавленном металле, а при затвердевании металла вновь соединяются в молекулы, которые собираются в разных местах шва, образуя газовые пузырьки. Водород вызывает в металле шва пористость и мелкие трещины, он повышает хрупкость стали, снижая ее прочность и вязкость. Водород, как и кислород, который может соединиться с расплавленным металлом шва, находится в окружающем воздухе, влаге, оставшейся в непросушенном электродном покрытии, во флюсах и на поверхности свариваемого металла в виде воды, снега, инея. Водород также содержится и в ржавчине, которая может быть на сварочной проволоке или кромках заготовок. Защита расплавленного металла шва от водорода осуществляется одновременно с защитой от кислорода.
Наименее насыщается металл водородом при сварке постоянным током обратной полярности, большее насыщение – при сварке переменным током.
Никель, содержащийся в легированных сталях, значительно улучшает их свариваемость: он измельчает зерно, придает шву пластичность и прочность. При сварке никелесодержащих сталей требуется надежная защита их от воздействия кислорода воздуха. Никель дорог. Применение никелевых сталей должно быть технико-экономически обосновано.
Титан, содержащийся в легированных сталях, измельчает зерно, повышает пластичность шва и качество соединения. Нержавеющие стали для ответственных сварных конструкций должны содержать в своем составе помимо никеля, еще 4 -5% титана.
На свариваемость стали также, влияют режимы и способы сварки.
Чтобы правильно выбрать способ и режимы сварки, исключающие возникновение дефектов, необходимо знать технологическую свариваемость металла. Это его реакция на тепловые воздействия в околошовной зоне без расплавления, а также металлургические процессы плавления и последующей кристаллизации металла. По известному химическому составу стали можно прогнозировать, какова ее технологическая свариваемость. Но точность таких прогнозов не всегда надежна и, полагаться на них, можно при сварке небольшого количества малоответственных изделий. В случае изготовления значительного числа ответственных сварных конструкций, необходимо экспериментально определять технологическую свариваемость той партии металла, из которой будут изготовлены изделия. Способы определения технологической свариваемости можно разделить на две группы .
Первая – когда прямым способом устанавливают свариваемость путем сварки одного или нескольких образцов изделия. При этом узнают о склонности металла к закалке или отсутствии таковой, о прочности и пластичности металла, об изменении микроструктуры. Полученные результаты отличаются высокой достоверностью;
Вторая – группа способов определения свариваемости проще и основана на имитации сварочных процессов. При этом косвенным способом, например, термообработкой при температурах, близких к сварочному процессу, определяют изменения в металле. Полнота и достоверность такой информации значительно ниже.
По свариваемости стали подразделяются на четыре группы, характеризующиеся способностью металлов образовывать при сварке соединения с заданными свойствами – прочные, герметичные, без хрупкости.
Первая группа – хорошо свариваемые стали, образующие сварные соединения высокого качества без применения особых приемов и подогрева до и после сварки. Это — низкоуглеродистые, низко- и среднелегированные стали. Например, от БСт1 до БСт4; от ВСт1 до ВСт4; от стали 08 до стали 25; стали 15Х; 20ХГА, 12ХН4А; 10ХСНД; 20Х23Н18Т; 12Х18Н9Т и другие требуемого химического состава.
Вторая группа – стали удовлетворительно свариваемые, которые для получения сварных соединений высокого качества требуют строгого соблюдения режимов сварки, применения специального присадочного материала, особо тщательной очистки свариваемых кромок, а в некоторых случаях – предварительного и сопутствующего подогрева до 150 0 С, последующий отжиг. Например, это стали БСт5сп; БСт5Гсп; сталь 30; сталь 35; сталь 20ХНЗА; сталь 12ХА и др.
Третья группа – стали с ограниченной свариваемостью в обычных условиях и склонные к образованию трещин. Содержат углерод от 0,35% до 0,5%, это могут быть и высоколегированные стали. Во избежание образования трещин их перед сваркой подвергают подогреву до 200…400 0 С с последующим отжигом. Например, БСт5пс; стали 40, 45, 50, 35ХН.
Четвертая группа – стали плохо свариваемые, практически не подлежащие сварке ввиду большого содержания углерода и легирующих элементов, приводящих к образованию трещин. Например, это стали 60Г, 70Г, 50ХН, 80С, У7, У10, У13, 9ХС, ХВГ, 3Х2ВФ. Качество сварных соединений таких сталей низкое, несмотря на предварительную сопутствующую и последующую термообработку.
К неудовлетворительно свариваемым сталям относятся и холодноупрочненные стали; арматура, упрочненная вытяжкой, сварка которой приводит к разупрочнению и повышению хрупкости.
Необходимо отметить, что свариваемость арматурной стали отличается от показателей свариваемости листа, фасонного проката для металлоконструкций. Например, арматурные стержни из Ст5 свариваются лучше, чем листовая сталь той же марки.
Сварка сталей на морозе не допускается.
При оценке свариваемости роль химического состава стали является превалирующей. По этому показателю в первом приближении проводят оценку свариваемости.
Влияние основных легирующих примесей на приведены ниже .
Углерод (С) – одна из важнейших примесей, определяющая прочность, пластичность, закаливаемость и др. характеристики стали. Содержание углерода в сталях до 0,25% не снижает свариваемости. Более высокое содержание «С» приводит к образованию закалочных структур в металле зоны термического влияния (далее по тексту – ЗТВ) и появлению трещин.
Сера (S) и фосфор (P) – вредные примеси. Повышенное содержание «S» приводит к – красноломкость, а «P» вызывает хладноломкость. Поэтому содержание «S» и «P» в низкоуглеродистых сталях ограничивают до 0,4-0,5%.
Кремний (Si) присутствует в сталях как примесь в количестве до 0,3% в качестве раскислителя. При таком содержании «Si» свариваемость сталей не ухудшается. В качестве легирующего элемента при содержании «Si» – до 0,8-1,0% (особенно до 1,5%) возможно образование тугоплавких оксидов «Si», ухудшающих свариваемость стали.
Марганец (Mn) при содержании в стали до 1,0% – процесс сварки не затруднен. При сварке сталей с содержанием «Mn» в количестве 1,8-2,5% возможно появление закалочных структур и трещин в металле ЗТВ.
Хром (Cr) в низкоуглеродистых сталях ограничивается как примесь в количестве до 0,3%. В низколегированных сталях возможно содержание хрома в пределах 0,7-3,5%. В легированных сталях его содержание колеблется от 12% до 18%, а в высоколегированных сталях достигает 35%. При сварке хром образует карбиды, ухудшающие коррозионную стойкость стали. Хром способствует образованию тугоплавких оксидов, затрудняющих процесс сварки.
Никель (Ni) аналогично хрому содержится в низкоуглеродистых сталях в количестве до 0,3%. В низколегированных сталях его содержание возрастает до 5%, а в высоколегированных – до 35%. В сплавах на никелевой основе его содержание является превалирующим. Никель увеличивает прочностные и пластические свойства стали, оказывает положительное влияние на свариваемость.
Ванадий (V) в легированных сталях содержится в количестве 0,2-0,8%. Он повышает вязкость и пластичность стали, улучшает ее структуру, способствует повышению прокаливаемости.
Молибден (Мо) в сталях ограничивается 0,8%. При таком содержании он положительно влияет на прочностные показатели сталей и измельчает ее структуру. Однако при сварке он выгорает и способствует образованию трещин в наплавленном металле.
Титан и ниобии (Ti и Nb) в коррозионностойких и жаропрочных сталях содержатся в количестве до 1%. Они снижают чувствительность стали к межкристаллитной коррозии, вместе с тем ниобий в сталях типа 18-8 способствует образованию горячих трещин.
Медь (Си) содержится в сталях как примесь (в количестве до 0,3% включительно), как добавка в низколегированных сталях (0,15 до 0,5%) и как легирующий элемент (до 0,8-1%). Она повышает коррозионные свойства стали, не ухудшая свариваемости.
При оценке влияния химического состава на , кроме содержания углерода, учитывается также содержание других легирующих элементов, повышающих склонность стали к закалке. Это достигается путем пересчета содержания каждого легирующего элемента стали в эквиваленте по действию на ее закаливаемость с использованием переводных коэффициентов, определенных экспериментально. Суммарное содержание в стали углерода и пересчитанных эквивалентных ему количеств легирующих элементов называется углеродным эквивалентом. Для его расчета существует ряд формул, составленных по различным методикам, которые позволяют оценить влияние химического состава низколегированных сталей на их свариваемость:
СЭКВ = С + Мn/6 + Сr/5 + Мо/5 + V/5 + Ni/15 + Си/15 (метод МИС);
СЭКВ = С + Мn/6 + Si/24 + Ni/40 + Сr/5 + Мо/4 (японский метод);
[С]Х = С + Мn/9 + Сr/9 + Ni/18 + 7Мо/90 (метод Сефериана),
где цифры указывают содержание в стали в массовых долях процента соотвтствующих элементов.
Каждая из этих формул приемлема лишь для определенной группы сталей, однако значение углеродного эквивалента может быть использовано при решении практических вопросов, связанных с разработкой . Достаточно часто расчеты химического углеродного эквивалента для углеродистых и низколегированных конструкционных сталей перлитного класса выполняются по формуле Сефериана.
По свариваемости стали условно делят на четыре группы: хорошо сваривающиеся, удовлетворительно сваривающиеся, ограниченно сваривающиеся, плохо сваривающиеся (табл. 1.1).
К первой группе относят наиболее распространенные марки низкоуглеродистых и легированных сталей ([С]Х≤0,38), сварка которых может быть выполнена по обычной технологии, т.е. без подогрева до сварки и в процессе сварки, а также без последующей термообработки. Литые детали с большим объемом наплавленного металла рекомендуется сваривать с промежуточной термообработкой. Для конструкций, работающих в условиях статических нагрузок, термообработку после сварки не производят. Для ответственных конструкций, работающих при динамических нагрузках или высоких температурах, термообработка рекомендуется
Ко второй группе относят углеродистые и легированные стали ([С]х=0,39-0,45), при сварке которых в нормальных условиях производства трещин не образуется. В эту группу входят стали, которые для предупреждения образования трещин необходимо предварительно нагревать, а также подвергать последующей термообработке. Термообработка до сварки различная и зависит от марки стали и конструкции детали. Для отливок из стали 30Л обязателен отжиг. Детали машин из проката или поковок, не имеющих жестких контуров, можно сваривать в термически обработанном состоянии (закалка и отпуск). Сварка при температуре окружающей среды ниже 0°С не рекомендуется. Сварку деталей с большим объемом наплавляемого металла рекомендуется проводить с промежуточной термообработкой (отжиг или высокий отпуск)
Таблица 1. Классификация сталей по свариваемости .
Группа свариваемости | Марка стали | |
Хорошо сваривающиеся | Низкоуглеродистые Ст1-Ст4 (кп, пс, сп) | |
08-25 (кп, пс) | ||
Хорошо сваривающиеся | 15К, 16К, 18К, 20К, 22К | |
А, А32, А36, А40, В, Д, Д32, Д36, Д40, Е, Е32, Е36, Е40 | ||
15Л, 20Л, 25Л | ||
Низколегированные 15Г, 20Г, 25Г, 10Г2, 12ХН, 12ХН2, 15Н2М, 15Х, 15ХА, 20Х, 15ХФ, 20Н2М | ||
09Г2, 09Г2С, 09Г2Д, 10Г2Б, 10Г2БД, 12ГС, 16ГС, 17ГС, 17Г1С, 10Г2С1,09Г2СД, 10Г2С1Д, ЮХСНД, ЮХНДП, 14Г2АФ, 14Г2АФД, 15ГФД, 15ХСНД | ||
08ГДНФЛ, 12ДН2ФЛ, 13ХДНФТЛ | ||
Удовлетворительно сваривающиеся | ||
Легированные 16ХГ, 18ХГТ, 14ХГН, 19ХГН, 20ХГСА, 20ХГР, 20ХН, 20ХНР, 12ХН3А, 20ХН2М | ||
15Г2АФДпс, 16Г2АФД, 15Г2СФ, 15Г2СФД | ||
18Г2С, 25Г2С | ||
20ГЛ, 20ГСЛ, 20ФЛ, 20Г1ФЛ, 20ДХЛ, 12ДХН1МФЛ | ||
Ограниченно сваривающиеся | Углеродистые Ст5 (пс, сп), Ст5Гпс | |
Легированные 25ХГСА, 29ХН3А, 12Х2Н4А, 20Х2Н4А, 20ХН4А, 25ХГМ, 35Г, 35Г2, 35Х, 40Х, 33ХС, 38ХС, 30ХГТ, 30ХРА, 30ХГС, 30ХГСА, 35ХГСА, 25ХГНМТ, 30ХГНЗА, 20Х2Н4А | ||
35ГЛ, 32Х06Л, 45ФЛ, 40ХЛ, 35ХГСЛ, 35НГМЛ, 20ХГСНДМЛ, 30ХГСФЛ, 23ХГС2МФЛ | ||
Плохо сваривающиеся | Углеродистые 50, 55 | |
Легированные 50Г, 45Г2, 50Г2, 45Х, 40ХС, 50ХГ, 50ХГА, 50ХН, 55С2, 55С2А, 30ХГСН2А и др. | ||
30ХНМЛ, 25Х2Г2ФЛ | ||
*ДСТУ 2651-94 (ГОСТ 380-94). ** В Украине отменен. |
В случае, когда невозможен последующий отпуск, заваренную деталь подвергают местному нагреву. Термообработка после сварки разная для различных марок сталей. При заварке мелких дефектов стали, содержащей более 0,35% углерода, для улучшения механических свойств и обрабатываемости необходима термическая обработка (отжиг или высокий отпуск по режиму для данной стали).
К третьей группе относят углеродистые и легированные стали ([С]Х=0,46-0,59) перлитного класса, склонные в обычных условиях сварки к образованию трещин. Свариваемость сталей этой группы обеспечивается при использовании специальных технологических мероприятий, заключающихся в их предварительной термообработке и подогреве. Кроме того, большинство изделий из этой группы сталей подвергают термообработке после сварки. Для деталей и отливок из проката или поковок, не имеющих особо жестких контуров и жестких узлов, допускается заварка в термически обработанном состоянии (закалка и отпуск).
Без предварительного подогрева такие стали можно сваривать в случаях, когда соединения не имеют жестких контуров, толщина металла не более 14мм, температура окружающей среды не ниже +5°С и свариваемые соединения имеют вспомогательный характер. Во всех остальных случаях обязателен предварительный подогрев до температуры 200°С.
Термообработка данной группы сталей назначается по режиму, выбираемому для конкретной стали.
К четвертой группе относят углеродистые и легированные стали ([С]х≥0,60) перлитного класса, наиболее трудно поддающиеся сварке и склонные к образованию трещин. При сварке этой группы сталей с использованием рациональных технологий не всегда достигаются требуемые эксплуатационные свойства сварных соединений. Эти стали свариваются ограниченно, поэтому их сварку выполняют с обязательной предварительной термообработкой, с подогревом в процессе сварки и последующей термообработкой. Перед сваркой такая сталь должна быть отожжена. Независимо от толщины и типа соединения сталь необходимо предварительно подогреть до температуры не ниже 200°С. Термообработку изделия после сварки проводят в зависимости от марки стали и ее назначения.
Эксплуатационная надежность и долговечность сварных конструкций из низколегированных теплоустойчивых сталей зависит от предельно допустимой температуры эксплуатации и длительной прочности сварных соединений при этой температуре. Эти показатели определяются системой легирования теплоустойчивых сталей. По системе легирования стали можно разделить на хромомолибденовые, хромомолибденованадиевые и хромомолибденовольфрамовые (табл. 1.2). В этих сталях значение углеродного эквивалента изменяется в широких пределах и оценка свариваемости сталей по его значению нецелесообразна. Расчет температуры предварительного подогрева выполняется для каждой конкретной марки сталей.
Разделение высоколегированных сталей по группам (нержавеющие, кислотостойкие, жаростойкие и жаропрочные) в рамках ГОСТ5632-72 выполнено условно в соответствии с их основными служебными характеристиками, так как стали жаропрочные и жаростойкие являются одновременно кислотостойкими в определенных агрессивных средах, а кислотостойкие стали обладают одновременно жаропрочностью и жаростойкостью при определенных температурах.
Для хорошо сваривающихся высоколегированных сталей термообработку до и после сварки не проводят. При значительном наклепе металл необходимо закалить от 1050-1100°С. Тепловой нормальный. К этой группе сталей можно отнести ряд кислотостойких и жаропрочных сталей с аустенитной и аустенитно-ферритной структурой.
Для удовлетворительно сваривающихся высоколегированных сталей перед сваркой рекомендуется предварительный отпуск при 650-710°С с охлаждением на воздухе. Тепловой режим сварки нормальный. При отрицательной температуре сварка не допускается. Предварительный подогрев до 150-200°С необходим при сварке элементов конструкции с толщиной стенки более 10мм. После сварки для снятия напряжений рекомендуется отпуск при 650-710°С. К этой группе в первую очередь можно отнести большую часть и некоторых хромоникелевых сталей.
Таблица 2. Марки теплоустойчивых и высоколегированных сталей и сплавов на железоникелевой и никелевой основе.
ГОСТ или ТУ | Марка стали | |
Перлитный или мартенситный | Теплоустойчивые хромомолибденовые 15ХМ, 20ХМ, 30ХМ, 30ХМА, 35ХМ, 38ХМ, 38Х2МЮА | |
ГОСТ20072-74 | 12МХ, 15Х5М, 15X5 | |
12ХМ, 10Х2М, 10Х2М-ВД | ||
ТУ5.961-11.151-80 | ||
Теплоустойчивые хромомолибденованадиевые и хромомолибденовольфрамовые 40ХМФА, 30ХЗМФ | ||
ГОСТ20072-74 | 20Х1М1Ф1БР, 12Х1МФ, 25Х1МФ, 25Х2М1Ф, 20Х1М1Ф1ТР, 18ХЗМВ, 20ХЗИВФ, 15Х5ВФ | |
ТУ14-1-1529-76 | 15Х1М1Ф ТУ14-1-3238-81, 35ХМФА | |
12Х2МФА, 18Х2МФА, 25Х2МФА | ||
ТУ14-1-1703-76 | ||
ТУ5.961-11151-80 | 20ХМФЛ, 15Х1М1ФЛ | |
Ферритный, мартенситно-ферритный и мартенситный | Высокохромистые нержавеющие 08X13, 12X13, 20X13, 30X13, 40X13, 25Х13Н2 | |
Высокохромистые кислотостойкие и жаростойкие 12X17, 08X17Т, 09Х16Н4Б, 30Х13Н7С2, 08Х18Т1, 15Х18СЮ, 15Х25Т, 15X28, 14Х17Н2, 20Х17Н2, 10Х13СЮ, 40Х9С2, 40Х10С2М | ||
ТУ 14-1-2889-80 | ||
ТУ14-1-1958-77 | ||
ТУ14-1-2533-78 | ||
Высокохромистые жаростойкие 15Х11МФ, 18Х11МНФБ, 20Х12ВНМФ, 11Х11Н2В2МФ, 13Х11Н2В2МФ, 13Х14НЗВ2ФР, 15Х12ВНМФ, 18Х12ВМБФР | ||
Аустенитный и аустенитно-ферритный | Кислотостойкие 04Х18Н10, 08Х18Н10, 08Х18Н10Т, 12Х18Н9, 12Х18Н9Т, 17Х18Н9, 12Х18Н10Т, 12Х18Н10Б, 03Х18Н11, 08Х18Н12Б, 03Х17Н14М2, Э8Х17Н13М2Т, 10Х17Н13М2Т, 10Х13МЗТ, 08Х17Н15МЗТ, 08Х18Н12Т, 08Х10Н20Т2, 10Х14Г14НЗ, 10Х14Г14Н4Т, 10Х14АГ15, 15Х17АГ14, 07Х21Г7АН5, 03Х21Н21М4ГБ, 12Х17Г9АН4, 08Х18Г8Н2Т, 15Х18Н12С4ТЮ | |
ТУ108.11.595-87 | ||
Аустенитно-мартенситный | 07Х16Н6, 09Х17Н7Ю, 09Х17Н7ЮТ, 08Х17Н5МЗ, 08Х17Н6Т, 09Х15Н8Ю, 20Х13Н4Г9 | |
Ферритно-аустенитный | Высокопрочные кислотостойкие 08Х22Н6Т, 12Х21Н5Т.08Х21Н6 | |
ТУ14-1-1958-77 | 10Х25Н6АТМФ | |
Ферритно-аустенитный | 12Х25Н5ТМФЛ | |
ТУ14-1-1541-75 | 03Х23Н6, 03Х22Н6М2 | |
Аустенитный | Жаростойкие 20Х23Н13, 10Х23Н18, 20Х23Н18, 08Х20Н14С2, 20Х20Н14С2, 20Х25Н20С2, 12Х25Н16Г7АР, 36Х18Н25С2, 45Х22Н4МЗ, 55Х20Г9АН4 | |
ХН38ВТ, ХН60Ю, ХН70Ю, ХН78Т | ||
Аустенитный | Жаропрочные 10Х11Н20ТЗР, 10Х11Н23ТЗМР, 08Х16Н13М2Б, 09Х16Н15МЗБ, 08Х15Н24В4ТР, 31Х19Н9МВБТ, 10Х11Н20ТЗР, 37Х12Н8Г8МФБ, 45Х14Н14В2М, 09Х14Н19В2БР, 09Х14Н19В2БР1, 40Х15Н7Г7Ф2МС, 09Х14Н16Б | |
Сплавы на железоникелевой и никелевой основе | ХН35ВТ, ХН35ВТЮ, ХН32Т, ХН38ВТ, ХН80ТБЮ, ХН67МВТЮ |
Для ограниченно сваривающихся высоколегированных сталей термообработка перед сваркой различная (отпуск при 650-710°С с охлаждением на воздухе или закалка в воде от 1050-1100°С). При сварке большинства сталей этой группы обязателен предварительный нагрев до 200-300°С.
После сварки для снятия напряжений и понижения твердости детали подвергают отпуску при 650-710°С. Для сварки ряда сталей аустенитного класса обязательна закалка в воде от 1050-1100°С.
Для плохо сваривающихся высоколегированных сталей перед сваркой рекомендован отпуск по определенным режимам для различных сталей.
Для всей группы сталей обязателен предварительный подогрев до 200-300°С. Сварка стали 110Г13Л в состоянии закалки производится без нагрева. Термообработку после сварки выполняют по специальным инструкциям, в зависимости от марки стали и назначения. Для стали 110Г13Л термообработка не требуется.