Процессы обработки металлов лезвийными инструментами подчиняются классическим законам теории резания металлов.
На всём протяжении развития обработки металлов резанием появление качественно новых инструментальных материалов, обладающих повышенной твёрдостью, теплостойкостью и износостойкостью, сопровождалось ростом интенсивности процесса обработки.
Созданные в нашей стране и за рубежом в конце пятидесятых, начале шестидесятых годов прошлого века и широко применяемые инструменты, оснащённые искусственными сверхтвёрдыми материалами на основе кубического нитрида бора (КНБ), характеризуются большим разнообразием.
По сведениям отечественных и зарубежных фирм — производителей инструментов в настоящее время существенно увеличивается применение материалов на основе КНБ.
В промышленно развитых странах потребление лезвийного инструмента из искусственных сверхтвёрдых материалов на основе КНБ продолжает расти в среднем до 15 % в год.
Согласно классификации, предложенной ВНИИинструмент, всем сверхтвёрдым материалам на основе плотных модификаций нитрида бора присвоено наименование композиты.
В теории и практике материаловедения композитом называют материал, не встречающийся в природе, состоящий из двух и более различных по химическому составу компонентов. Для композита характерно наличие отчётливых
границ, отделяющих его компоненты. Композит состоит из наполнителя и матрицы. Наибольшее влияние на его свойства оказывает наполнитель, в зависимости от которого композиты подразделяются на две группы: 1) с дисперсными частицами; 2) армированные непрерывными волокнами и армированные волокнами в нескольких направлениях.
Термодинамические особенности полиморфизма нитрида бора обусловили появление большого количества материалов на основе его плотных модификаций и различных технологий его получения.
В зависимости от вида основного процесса, протекающего при синтезе и определяющего свойства сверхтвёрдых материалов, в современных технологиях получения инструментальных материалов из нитрида бора можно выделить три основных метода:
- фазовое превращение гексагонального нитрида бора в кубический. Поликристаллические сверхтвёрдые материалы, полученные таким образом, отличаются друг от друга наличием или отсутствием катализатора, его видом, структурой, параметрами синтеза и т.д. К материалам этой группы относятся: композит 01 (эльбор-Р) и композит 02 (белбор). За рубежом материалы этой группы не выпускаются;
- частичное или полное превращение вюрцитного нитрида бора в кубический. Отдельные материалы этой группы различаются составом исходной шихты. У нас в стране из материалов этой группы производят одно- и двухслойный композит 10 (гексанит-Р) и различные модификации композита 09 (ПТНБ и др.). За рубежом материалы этой группы выпускаются в Японии фирмой «Ниппон Ойл Фате» под торговой маркой вюрцип;
- спекание частиц кубического нитрида бора с добавками. Эта группа материалов является самой многочисленной, так как возможны различные варианты связки и технологии спекания. По этой технологии в отечественной промышленности производятся композит 05, киборит и ниборит. Наиболее известными зарубежными материалами являются бора зон, амборит и сумиборон.
Дадим краткое описание наиболее известных сверхтвердых инструментальных материалов.
Композит 01 (эльбор-Р) — создан в начале 70-х годов.
Этот материал состоит из беспорядочно ориентированных кристаллов кубического нитрида бора, полученных каталитическим синтезом. В результате высокотемпературного прессования под действием высокого давления первоначальные кристаллы BN K дробятся до размеров 5…20 мкм. Физико-механические свойства композита 01 зависят от состава исходной шихты и термодинамических параметров синтеза (давления, температуры, времени). Примерное массовое содержание составляющих композита 01 следующее: до 92 % BN K , до 3 % BN r , остальное — примеси добавок- катализаторов.
Модификация композита 01 (эльбор-РМ) в отличие от эльбора-Р получается прямым синтезом BN r -> BN к, осуществляемым при высоких давлениях (4,0…7,5 ГПа) и температурах (1300…2000°С). Отсутствие в шихте катализатора позволяет получить стабильные эксплуатационные свойства.
Композит 02 (белбор) — создан в Институте физики твердого тела и полупроводников АН БССР.
Получается прямым переходом из BN r в аппаратах высокого давления при статическом приложении нагрузки (давление до 9 ГПа, температура до 2900 °С). Процесс осуществляется без катализатора, что обеспечивает высокие физико-механические свойства композита 02. При упрощенной технологии изготовления за счёт введения определенных легирующих добавок имеется возможность варьировать физико-механические свойства поликристаллов.
Белбор по твёрдости сравним с алмазом и значительно превосходит его по термостойкости. В отличие от алмаза он химически инертен к железу, а это позволяет эффективно использовать его для обработки чугуна и сталей — основных машиностроительных материалов.
Композит 03 (исмит) — впервые синтезирован в ИСМ АН УССР.
Выпускаются три марки материала: исмит-1, исмит-2, исмит-3, различающиеся физико-механическими и эксплуатационными свойствами, что является следствием различия исходного сырья и параметров синтеза.
Ниборит — получен ИФВД АН СССР.
Высокая твёрдость, теплостойкость и значительные размеры этих поликристаллов предопределяют их высокие эксплуатационные свойства.
Киборит — синтезирован впервые в ИСМ АН УССР.
Поликристаллы получают горячим прессованием шихты (спеканием) при высоких статических давлениях. В состав шихты входят порошок кубического нитрида бора и специальные активирующие добавки. Состав и количество добавок, а также условия спекания обеспечивают получение структуры, в которой сросшиеся кристаллы BN К образуют непрерывный каркас (матрицу). В межзёрных промежутках каркаса образуется тугоплавкая твёрдая керамика.
Композит 05 — структура и технология получения разработаны в НПО ВНИИАШ.
Материал в своей основе содержит кристаллы кубического нитрида бора (85…95 %), спекаемые при высоких давлениях с добавками оксида алюминия, алмазов и др. элементов. По своим физико-механическим свойствам композит 05 уступает многим поликристаллическим сверхтвёрдым материалам.
Модификацией композита 05 является композит 05ИТ. Он отличается высокими теплопроводностью и теплостойкостью, которые получены путём введения в шихту специальных добавок.
Композит 09 (ПТНБ) разработан в Институте химической физики АН СССР.
Выпускается несколько марок (ПТНБ-5МК, ПТНБ-ИК-1 и др.), которые различаются составом исходной шихты (смесью порошков BN B и BN К). Отличие композита 09 от других композиционных материалов заключается в том, что его основу составляют частицы кубического нитрида бора размерами 3…5 мкм, а в качестве наполнителя выступает вюрцитный нитрид бора.
За рубежом выпуск материалов данного класса с использованием превращения вюрцитного нитрида бора осуществляется в Японии фирмой «Ниппон Ойл Фате» совместно с Токийским государственным университетом.
Композит 10 (гексанит-Р) создан в 1972 г. Институтом проблем материаловедения АН УССР совместно с Полтавским заводом искусственных алмазов и алмазного инструмента.
Это поликристаллический сверхтвёрдый материал, основу которого составляет вюрцитная модификация нитрида бора. Технологический процесс получения гексанита-Р, как и предыдущих композитов, состоит из двух операций:
- синтеза BN B методом прямого перехода BN r -> BN В при ударном воздействии на исходный материал и
- спекания порошка BN В при высоких давлениях и температурах.
Для композита 10 характерна мелкозернистая структура, но размеры кристаллов могут колебаться в значительных пределах. Особенности структуры определяют и особые механические свойства композита 10 — он не только обладает высокими режущими свойствами, но и может успешно работать при ударных нагрузках, что менее выражено у других марок композитов.
На основе гексанита-Р в Институте проблем материаловедения АН УССР получена улучшенная марка композита 10 — гексанит-РЛ, армированный нитевидными кристаллами — волокнами «сапфирных усов».
Композит 12 получается спеканием при высоких давлениях смеси порошка вюрцитного нитрида бора и поликристаллических частиц на основе Si 3 N 4 (нитрида кремния). Размер зёрен основной фазы композита не превышает 0,5 мкм.
Перспектива дальнейшего развития, создания и производства композитов связана с использованием в качестве наполнителя нитевидных или игольчатых кристаллов (усов), которые могут быть получены из таких материалов, как В 4 С, SiC, Si 2 N 4 . ВеО и др.
Наиболее эффективное применение алмазного инструмента получают на чистовых и отделочных операциях при обработке деталей из цветных металлов и их сплавов, а также неметаллических и композиционных материалов. Алмаз, как инструментальный материал имеет два существенных недостатка — относительно низкую теплостойкость и диффузионное растворение в железе при высоких температурах, что практически исключает использование алмазного инструмента при обработке сталей и сплавов, способных образовывать карбиды. В то же время, благодаря очень высокой теплопроводности, режущая кромка лезвия интенсивно охлаждается, поэтому алмазный инструмент пригоден для работы с высокими скоростями резания.
Типы существующих в мировой практике СТМ на основе алмазов представлены на рис. 6.23.
Рис. 6.23 Сверхтвердые материалы для лезвийного инструмента на основе алмаза
Монокристаллические алмазные лезвийные инструменты применяют для обработки радиотехнической керамики, полупроводниковых материалов, высокоточной обработки цветных сплавов. Монокристаллический алмазный инструмент характеризуется рекордными показателями по износостойкости и минимальным радиусом округления режущей кромки, что обеспечивает высокое качество обработанной поверхности. Следует учитывать, что стоимость монокристаллического алмазного лезвийного инструмента в разы превосходит стоимость алмазного инструмента из поликристаллов. Преимущества инструментальных поликристаллических алмазов (ПКА, за рубежом PCD), в сравнении с монокристаллическими, связаны с произвольной ориентацией кристаллов в рабочем слое режущих пластин, что обеспечивает высокую однородность по твердости и стойкости к истиранию во всех направлениях при больших показателях прочности. Из поликристаллических алмазов, полученных на основе фазового перехода, распространение для лезвийного инструмента получили марки АСПК, которые получают из графита при синтезе в присутствии металлорастворителей. Марки АСПК выпускаются в виде цилиндров диаметром 2, 3 и 4 мм, длиной до 4 мм.
Из всех видов PCD наибольшее распространение имеют алмазные инструменты полученные спеканием порошков алмазов (размер 1…30 мкм) в присутствии кобальтового катализатора. Примером могут служить мелкозернистые CMX850 или универсальная марка CTM302 фирмы ElementSix, вставки различной формы ВНИИАЛМАЗ, ОАО «МПО ВАИ». Существенные преимущества по прочности пластин и по удобству их крепления пайкой в корпусе инструмента имеют двухслойные пластины с алмазным слоем на твердосплавной подложке, называемые также АТП — алмазно-твердосплавные пластины. Например, за рубежом такие пластины различных типоразмеров под фирменным названием Compax выпускает Diamond Innovations. Компания Element Six выпускает пластины Sindite с толщиной алмазного слоя от 0,3 до 2,5 мм и различной величиной алмазного зерна. Двухслойный СВБН отечественного производства припаивают в вершине твердосплавной пластины стандартных размеров. К классу композиционных относят алмазосодержащие материалы на основе твердых сплавов, а также композиции на основе поликристаллических алмазов и гегсагонального нитрида бора. Из композитов алмаз — твердый сплав, хорошо зарекомендовавших себя в эксплуатации, следует отметить «Славутич» (из природных алмазов) и «Твесал» (из синтетических алмазов).
Поликристаллы алмаза, полученные химическим парофазным осаждением (CVD-diamond), представляют принципиально новый тип СТМ на основе алмазов. По сранению с поликристаллическими алмазами других типов, они характеризуются высокой чистотой, твердостью и теплопроводностью, но меньшей прочностью. Представляют толстые пленки, а по сути — пластины толщиной 0,3…2,0 мм (наиболее типична толщина 0,5 мм), которые после выращивания отслаиваются от подложки, разрезаются лазером и припаиваются к твердосплавным вставкам. При обработке высокоабразивных и твердых материалов имеют стойкость в несколько раз выше других PCD. По данным компании ElementSix, выпускающих такие PCD под общим названием CVDite, они рекомендуются для непрерывного точения керамики, твердых сплавов, металломатричных композиций. Для обработки сталей не используются. В последние годы появились публикации о промышленном выращивании монокристаллических алмазов по технологии CVD. Таким образом, в ближайшем будущем следует ожидать появления на рынке монокристаллических алмазных инструментов этого типа.
По технологии CVD получают не только алмазный лезвийный инструмент, описанный выше, но и алмазные покрытия на твердом сплаве и некоторых керамических инструментальных материалах. Поскольку температура процесса составляет 600…1000 0 С, такие покрытия не могут быть нанесены на стальной инструмент. Толщина покрытий на инструменте, в том числе сложнопрофильном (сверла, фрезы, СМП), составляет 1…40 мкм. Области рационального использования алмазных покрытий аналогичны инструменту CVD-diamond.
Следует отличать алмазные покрытия от алмазоподобных. Алмазоподобные — Diamond-LikeCoating (DLC) покрытия аморфного типа состоят из атомов углерода, как с алмазными, так и с графитоподобными связями. Алмазоподобные покрытия, наносимые методами физического осаждения из газовой фазы (PVD) и химического осаждения из газовой фазы активированные плазмой (PACVD) имеют толщину 1…30 мкм (обычно около 5 мкм) и характеризуются высокой твердостью и рекордно низким коэффициентом трения. Поскольку процесс нанесения таких покрытий проводится при температурах не выше 300 0 С они используются также для повышения стойкости быстрорежущего инструмента. Наибольший эффект от алмазоподобных покрытий достигается при обработке медных, алюминиевых, титановых сплавов, неметаллических материалов и высокоабразивных материалов.
Сверхтвердые композиты на основе нитрида бора. СТМ на основе поликристаллического кубического нитрида бора (ПКНБ в России и PCBN за границей), незначительно уступая алмазу по твердости, отличаются высокой теплостойкостью, стойкостью к циклическому воздействию высоких температур и, что особенно важно, более слабым химическим взаимодействием с железом, поэтому наибольшая эффективность применения инструментов на основе BN имеет место при обработке чугунов и сталей, в том числе высокотвердых.
За рубежом по ISO 513 подразделение марок PCBN ведется по содержанию в материале кубического нитрида бора: с высоким (70…95%) содержанием BN (индекс «H») и относительно небольшим количеством связки, и с низким (40…70%) содержанием BN (индекс «L»). Для низкосодержащих марок PCBN используется керамическая связка TiCN. Марки с высоким содержанием BN рекомендуются для высокоскоростной обработки чугуна всех типов, в том числе закаленных и отбеленных, а также точения жаропрочных никелевых сплавов. PCBN с низким содержанием BN, обладают большей прочностью и используются в основном для обработки закаленных сталей, в том числе при прерывистой обработке. Фирмой Sumitomo Electric также выпускаются пластины PCBN с керамическим покрытием (тип BNC), имеющие повышенную стойкость при высокоскоростной обработке сталей и обеспечивающие высокое качество обработанной поверхности.
Помимо однородных по структуре, ПКНБ выпускаются в виде двухслойных пластин с твердосплавной основой (аналогично ПКА). Композиционные ПКНБ получают спеканием смеси порошков синтетического алмаза и кубического или вюрцитного нитрида бора. В зарубежных странах материалы на основе вюрцитного нитрида бора широкого применения не имеют.
Назначение СТМ на основе кубического нитрида бора:
Композит 01 (Эльбор Р), Композит 02 (Бельбор Р) — тонкое и чистовое точение без удара и торцовое фрезерование закалённых сталей и чугунов любой твёрдости, твёрдых сплавов с содержанием связки более 15%.
Композит 03 (Исмит) — чистовая и получистовая обработка закалённых сталей и чугунов любой твёрдости.
Композит 05, композит 05ИТ, композит КП3 — предварительное и окончательное точение без удара закалённых сталей до 55HRC и серого чугуна твердостью 160…600HB, глубина резания до 0,2…2 мм, торцовое фрезерование чугуна.
Композит 06 — чистовое точение закалённых сталей до 63HRC.
Композит 10 (Гексанит Р), композит КП3 — предварительное и окончательное точение с ударом и без удара, торцовое фрезерование сталей и чугунов любой твёрдости, твёрдых сплавов с содержанием связки более 15% , прерывистое точение, обработка наплавленных деталей. Глубина резания 0,05…0,7 мм.
Томал 10, Композит 10Д — черновое, получерновое и чистовое точение и фрезерование чугунов любой твёрдости, точение и растачивание сталей и сплавов на основе меди, резание по литейной корке.
Композит 11 (Kиборит) -предварительное и окончательное точение, в том числе с ударом, закалённых сталей и чугунов любой твёрдости, износостойких плазменных наплавок, торцовое фрезерование закалённых сталей и чугунов.
За рубежом лезвийные инструменты на основе PCBN выпускают фирмы ElementSix, Diamond Innovations, Sumitomo Electric Industries, Toshiba Tungalloy, Kyocera, NTK Cutting Tools, Ceram Tec, Kennametal, Seco Tools, Mitsubishi Carbide, Sandvik Coromant, ИСМ (Украина), Widia, Ssangyong Materials Corporation и др.
Основная область эффективного применения лезвийного режущего инструмента из СТМ – автоматизированное производство на базе станков с ЧПУ, многоцелевых станков, автоматических линий, специальных скоростных станков. В связи с повышенной чувствительностью инструментов из СТМ к вибрациям и ударным нагрузкам, к станкам предъявляются повышенные требования в отношении точности, виброустойчивости и жесткости технологической системы. Различные виды СBN (композиты на основе кубического нитрида бора) применяют для обработки закаленных сталей и чугуна, которые имеют высокую твердость и прочность. Композиты показывают отличные эксплуатационные характеристики во время обработки и обеспечивают хорошее качество поверхности, благодаря своему химическому составу и современной технологии спекания (рис. 6.24).
Рисунок 6.24 – Типичные изображения микроструктуры композита на основе CBN
Применение инструмента из СТМ позволяет увеличить производительность обработки в несколько раз по сравнению с твердосплавным инструментом, при этом улучшается качество обработанных поверхностей и исключается необходимость последующей абразивной обработки. Выбор оптимальной скорости резания определяется величиной снимаемого припуска, возможностями оборудования, подачей, наличием ударных нагрузок в процессе резания и многими другими факторами (рис. 6.25, 6.26).
Рисунок 6.26 – Области применения некоторых марок композитов
Рисунок 6.26 – Пример обработки закаленных сталей инструментом из СТМ
7 ПРИНЦИПЫ ПОСТРОЕНИЯ ТЕХНОЛОГИЧЕСКИХ ПРОЦЕССОВ ПРИ ОБРАБОТКЕ МАТЕРИАЛОВ РЕЗАНИЕМ.
Анализ особенностей и режущие свойства ПСТМ. Сверхтвердыми принято считать инструментальные материалы, имеющие твердость по Виккерсу при комнатной температуре свыше 35 ГПа.
Природный алмаз — самый твердый материал на Земле, который издавна применяется в качестве режущего инструмента. Принципиальное отличие мо — нокристаллического природного алмаза от всех других инструментальных материалов, имеющих поликристаллическое строение, с точки зрения инструментальщика состоит в возможности получения практически идеально острой и прямолинейной режущей кромки. Поэтому в конце XX века с развитием электроники, прецизионного машиностроения и приборостроения применение резцов из природных алмазов для микроточения зеркально чистых поверхностей оптических деталей, дисков памяти, барабанов копировальной техники и т. п. возрастает. Однако из-за дороговизны и хрупкости природные алмазы не применяются в общем машиностроении, где требования к обработке деталей не столь высоки.
Потребность в сверхтвердых материалах привела к тому, что в 1953 — 1957 годах в США и в 1959 году в СССР методом каталитического синтеза при высоких статических давлениях из гексагональных фаз графита (С) и нитрида бора (BN) были получены мелкие частицы кубических фаз синтетического алмаза и нитрида бора. Крупные поликристаллы, предназначенные для лезвийных инструментов, были получены в промышленных условиях в начале 70-х годов.
Диаграмма состояния углерода и нитрида бора представлена на рис. 11.9.
В основе технологии изготовления поликристаллов диаметром 4-40 мм лежат два различных процесса: фазовый переход вещества из одного состояния в другое (собственно синтез) или спекание мелких частиц заранее синтезированного порошка ПСТМ. В нашей стране первым способом получают поликристаллический кубический нитрид бора (ПКНБ) марок композит 01 (эль — бор РМ) и композит 02 (бельбор), а также поликристаллический алмаз (ПКА) марок АСПК (карбонадо) и АСЕ (баллас). За рубежом изготовителями ПСТМ по технологии спекания являются три крупнейшие фирмы «General Electric» (США), «De Beers» (ЮАР) и «Sumitomo Electric» (Япония). Режущие инструменты из поликристаллов этих трех поставщиков производят сотни фирм во всем мире.
ПСТМ — принципиально новые, как по технологии изготовления, так и по условиям эксплуатации инструментальные материалы. Ими можно обрабаты
вать изделия при скоростях резания на порядок выше скоростей, допускаемых при использовании твердосплавного инструмента. Кроме того, инструмент из ПКА имеет в десятки раз более высокую скорость, чем инструмент из твердых сплавов.
* Коэффициент стойкости к термоудару R = ,
** Эмпирическая характеристика износостойкости И/4 Е ‘ Н:
Поликристаллические сверхтвердые материалы (ПСТМ) систематизируются по таким определяющим признакам, как состав основы поликристаллов, способы получения, характеристика исходного материала. Вся гамма поликристаллов разделяется на пять основных групп: ПСТМ на основе алмаза (СПА),
ПСТМ на основе плотных модификаций нитрида бора (СПНБ), композиционные сверхтвердые материалы (КСТМ), двухслойные сверхтвердые композиционные материалы (ДСКМ) .
ПСТМ на основе алмазов. Поликристаллы на основе синтетического алмаза можно разделить на четыре разновидности :
1. Поликристаллы, получаемые спеканием мелких алмазных порошков в чистом виде или после специальной предварительной обработки для активации процесса спекания. Изготовленные по такой схеме поликристаллы представляют собой, как правило, однофазный продукт. Примером могут служить мегадаймонд, карбонит.
2. Поликристаллы алмаза типа СВ. Они представляют собой гетерогенный композит, состоящий из частиц алмаза, скрепленных связкой — второй фазой, которая располагается в виде тонких прослоек между кристаллами алмаза.
3. Синтетические карбонады типа АСПК. Их получают путем воздействия на углеродосодержащее вещество со значительным количеством катализатора одновременно высокого давления и высокой температуры. Плотность таких поликристаллов изменяется в широких пределах, а содержание примесей составляет от 2 до 20% по массе. Поэтому поликристаллы типа АСПК обладают меньшей твердостью и прочностью, чем поликристаллы первых двух разновидностей.
4. Поликристаллы алмаза, получаемые пропиткой алмазного порошка металлическим связующим при высоких давлениях и температурах. В качестве связки используются никель, кобальт, железо, хром. Алмазные поликристаллы, получаемые по указанному способу, имеют высокие механические свойства.
Физико-механические свойства ПСТМ на основе алмазов представлены в табл. 11.20.
Таблица 11.20 Физико-механические свойства ПСТМ на основе алмазов
|
Микротвердость поликристаллических алмазов в среднем такая же, как природных монокристаллов, но диапазон изменения ее у синтетических алмазов шире. Отношение максимального значения к минимальному для различных типов поликристаллов находится в пределах 1,2 -2,28.
Микротвердость на периферии в 1,25 раза больше, чем в центре образца на участках, прилегающих к катализатору.
Плотность синтетических балласа и карбонадо выше, чем плотность природных монокристаллов алмаза, что объясняется наличием определенного количества металлических включений. С увеличением концентрации металлической фазы практически пропорционально возрастает и плотность.
Теплопроводность поликристаллов алмаза превышает теплопроводность меди и серебра, а в ряде случаев достигает значений теплопроводности монокристаллов алмаза. Теплопроводность поликристаллов зависит от температуры. Причем для одних материалов с увеличением температуры до 450°С теплопроводность возрастает, достигая максимума, а затем снижается. Для других, типа АСБ и СКМ, — монотонно снижается до 900°С.
ПСТМ на основе кубического нитрида бора. Существует несколько разновидностей ПСТМ на основе нитрида бора.
1. Поликристаллы, синтезируемые из гексагонального нитрида бора (ГНБ) в присутствии растворителя ВМгВМсф (типичным представителем является композит 01);
2. Поликристаллы, получаемые в результате прямого перехода гексагональной модификации в кубическую BNrBN (композит 02);
3. Поликристаллы, получаемые в результате превращения вюрцитопо — добной модификации в кубическую BNg ВМдф. Поскольку полнота перехода регулируется параметрами спекания, то к этой группе относятся материалы с заметно отличающимися свойствами (композит 10, композит 09);
4. Поликристаллы, получаемые спеканием порошков кубического нитрида бора (КНБ) с активирующими добавками (композит 05-ИТ, киборит и др.).
Основные физико-механические характеристики различных марок ПСТМ на основе плотных модификаций нитрида бора приведены в табл. 11.21.
Таблица 11.21 Основные физико-механические характеристики ПСТМ на основе плотных модификаций нитрида бора |
Окончание табл. 11.21
|
ПСТМ на основе плотных модификаций нитрида бора, незначительно уступая алмазу по твердости, отличаются высокой термостойкостью, стойкостью к циклическому воздействию высоких температур и, что особенно важно, более слабым химическим взаимодействием с железом, являющимся основным компонентом большинства материалов, подвергаемых в настоящее время обработке резанием.
Поликристаллы типа композит 01 имеют мелкозернистую структуру, доминирующей фазой которой являются мелкие зерна КНБ, сросшиеся и взаимно проросшие с образованием прочного агрегата. Примеси равномерно распределены по объему образца. Наряду с основной кубической модификацией в них возможно частичное содержание непрореагировавшего гексагонального нитрида бора.
Размеры зерен и включений сопутствующих фаз примерно равны 30 мкм, пористость равномерная, составляет 10%.
Композиционные сверхтвердые материалы (КСТМ). Однородные по объему КСТМ получают спеканием смеси порошков синтетического алмаза и кубического или вюрцитного нитрида бора. Сюда относят материалы типа ПКНБ — АС, СВАБ (СНГ), компакт (Япония). Эти материалы следует рассматривать как перспективные.
Из материалов этого класса наибольшей микротвердостью обладают материалы СВ-1 и СВ-40, а наименьшей — СВ-14, СВАБ. Невосстановленная микротвердость изменяется от 47,0 до 66,0 ГПа, а модуль упругости — от 640 до 810 ГПа.
К классу композиционных относят также алмазосодержащие материалы на основе твердых сплавов. Из материалов этой группы, хорошо зарекомендовавших себя в эксплуатации, следует отметить «Славутич» (из природных алмазов) и твесалы (из синтетических алмазов).
Двухслойные композиционные поликристаллические материалы (ДСКМ). Принципиальной особенностью ДСКМ является то, что спекание порошков сверхтвердых материалов производится при высоких температурах и давлениях на подложке из твердых сплавов на основе карбидов вольфрама, титана, тантала, в результате чего образуется слой ПСТМ толщиной 0,5-1 мм, прочно связанный с материалом подложки. Алмазоносный слой может содержать компоненты подложки.
Двухслойные материалы имеют некоторые преимущества по сравнению с однородными по объему СТМ. Упрощается технология крепления режущего инструмента в корпусе державки путем пайки к твердосплавной подложке. Наличие подложки, прочно соединенной с рабочим слоем из СТМ, придает материалам повышенную ударную прочность, а использование слоя СТМ малой толщины (0,5-2 мм) делает их более экономичными, поскольку при затачивании и перетачивании инструмента значительно уменьшаются безвозвратные потери дорогостоящих сверхтвердых материалов.
К наиболее известным отечественным двухслойным сверхтвердым композиционным материалам из кубического нитрида бора относятся композит 05- ИТ-2С, композит 10Д, ВПК , на основе алмаза — ДАП, диамет, АМК-25, АМК-27, БПА, АТП. За рубежом двухслойные поликристаллические сверхтвердые материалы на основе алмаза выпускает фирма «De Beers» (ЮАР) с торговой маркой синдит РКД010 и РКД 025 . Синдит РКД025 рекомендуется главным образом для грубой обработки, а более мелкозернистый синдит марки РКД010 — для окончательной обработки.
Области применения инструмента из ПСТМ. Основная область эффективного применения лезвийного режущего инструмента из ПСТМ — автоматизированное производство на базе станков с ЧПУ, многоцелевых станков, автоматических линий, специальных скоростных станков.
В табл. 11.22 приведены скорости резания, рекомендуемые для обработки различных материалов инструментом из ПСТМ.
Выбор конкретной скорости резания определяется величиной снимаемого припуска, возможностями оборудования, подачей, наличием ударных нагрузок в процессе резания и многими другими факторами.
Разработана и выпускается широкая номенклатура инструментов из ПСТМ . Это токарные проходные, подрезные, расточные, канавочные, резьбовые резцы, в том числе ступенчатой конструкции для снятия повышенных припусков с деталей типа прокатных валков, торцовые хвостовые и насадные фрезы, в том числе регулируемые и переналаживаемые, которые могут оснащаться пластинами из различных инструментальных материалов с оптимальной для каждого геометрией, гамма расточных напайных и сборных резцов, зенковки, расточные головки и т. д. Для обработки древесностружечных плит на автоматических линиях созданы пилы, оснащенные ПСТМ. Инструменты могут оснащаться как напайными режущими элементами (цилиндрические и прямоугольные вставки, твердосплавные многогранные пластины с напаянными в одной из вершин ПСТМ), так и сменными круглыми и многогранными пластинами цельной или двухслойной конструкции.
Таблица 11.22 Скорости резания инструментом из ПСТМ
|
Отметим, что для точения с ударом и фрезерования закаленных быстрорежущих сталей и сталей с высоким содержанием хрома (типа Х12) инструмент из ПСТМ не рекомендуется.
Расчеты показали, что необходимым условием эффективности внедрения инструмента из ПСТМ на станках с ЧПУ и обрабатывающих центрах взамен твердосплавных резцов и фрез является увеличение интенсивности съема припуска (объем металла в единицу времени) в 1,5-2,5 раза. Однако практика внедрения высокоскоростного резания указывает на возможность повышения производительности обработки в 3-6 и более раз. Так, при создании автоматизированного завода «Красный пролетарий» для чистовой обработки чугунных корпусных деталей с шероховатостью поверхности Ra 1,25 мкм на многоцелевых станках типа ИР 500 предложено использовать кассетные торцовые фрезы d = 125 мм новой конструкции с осевым и радиальным регулированием положения зачистных радиусных режущих кромок (с точностью не хуже 0,005 мм) квадратных пластин из ПКНБ. Режим резания п = 3000 об/мин; v = 1177 м/мин; SM = 2000 мм/мин; t = 0,3-0,4 мм. При использовании высокоскоростных станков с п = 6000 об/мин скорость резания возрастает до 2350 м/мин, подача до 4000 мм/мин, а производительность процесса резания станет в 10 раз выше по сравнению с существующим уровнем.
Тенденции развития процессов механической обработки резанием позволяют утверждать, что в ближайшие годы высокоскоростное резание с широким применением новых инструментальных материалов станет вполне заурядным явлением на предприятиях, оснащенных передовым автоматизированным оборудованием.
Одним из направлений совершенствования режущих свойств инструментов, позволяющим повысить производительность труда при механической обработке, является повышение твердости и теплостойкости инструментальных материалов. Наиболее перспективными в этом отношении являются алмаз и синтетические сверхтвердые материалы на основе нитрида бора.
Алмазы и алмазные инструменты широко используются при обработке деталей из различных материалов. Для алмазов характерны исключительно высокая твердость и износостойкость. По абсолютной твердости алмаз в 4 — 5 раз тверже твердых сплавов и в десятки и сотни раз превышает износостойкость других инструментальных материалов при обработке цветных сплавов и пластмасс. Кроме того, вследствие высокой теплопроводности алмазы лучше отводят теплоту из зоны резания, что способствует гарантированному получению деталей с бесприжоговой поверхностью. Однако алмазы весьма хрупки, что сильно сужает область их применения.
Для изготовления режущих инструментов основное применение получили искусственные алмазы , которые по своим свойствам близки к естественным. При больших давлениях и температурах в искусственных алмазах удается получить такое же расположение атомов углерода, как и в естественных. Масса одного искусственного алмаза обычно составляет 1/8-1/10 карата (1 карат — 0,2 г). Вследствие малости размеров искусственных кристаллов они непригодны для изготовления таких инструментов, как сверла, резцы и другие, а поэтому применяются при изготовлении порошков для алмазных шлифовальных кругов и притирочных паст.
Лезвийные алмазные инструменты выпускаются на основе поликристаллических материалов типа «карбонадо» или «баллас». Эти инструменты имеют длительные размерные периоды стойкости и обеспечивают высокое качество обработанной поверхности. Применяются они при обработке титановых, высококремнистых алюминиевых сплавов, стеклопластиков и пластмасс, твердых сплавов и других материалов.
Алмаз как инструментальный материал имеет существенный недостаток — при повышенной температуре он вступает в химическую реакцию с железом и теряет работоспособность.
Для того чтобы обрабатывать стали, чугуны и другие материалы на основе железа, были созданы сверхтвердые материалы , химически инертные к нему. Такие материалы получены по технологии, близкой к технологии получения алмазов, но в качестве исходного вещества используется не графит, а нитрид бора.
Поликристаллы плотных модификаций нитрида бора превосходят по теплостойкости все материалы, применяемые для лезвийного инструмента: алмаз в 1,9 раза, быстрорежущую сталь в 2,3 раза, твердый сплав в 1,7 раза, минералокерамику в 1,2 раза.
Эти материалы изотропны (одинаковая прочность в различных направлениях), обладают микротвердостью меньшей, но близкой к твердости алмаза, повышенной теплостойкостью, высокой теплопроводностью и химической инертностью по отношению к углероду и железу.
Характеристики отдельных из рассматриваемых материалов, которые в настоящее время получили название «композит», приведены в таблице.
Сравнительные характеристики СТМ на основе нитрида бора
Марка | Первоначальное название | Твердость HV, ГПа | Теплостойкость, o С |
Композит 01 | Эльбор-Р | 60…80 | 1100…1300 |
Композит 02 | Белбор | 60…90 | 900…1000 |
Композит 03 | Исмит | 60 | 1000 |
Композит 05 | Композит | 70 | 1000 |
Композит 09 | ПКНБ | 60…90 | 1500 |
Композит 10 | Гексанит-Р | 50…60 | 750…850 |
Эффективность применения лезвийных инструментов из различных марок композитов связана с совершенствованием конструкции инструментов и технологии их изготовления и с определением рациональной области их использования:
- композиты 01(эльбор-Р) и 02 (белбор) используют для тонкого и чистового точения и фрезерования без ударов деталей из закаленных сталей твердостью 55…70 НRС, чугунов и твердых сплавов ВК15, ВК20 и ВК25 с подачами до 0,20 мм/об и глубиной резания до 0,8
- композит 05 применяют для чистового и получистового точения без ударов деталей из закаленных сталей твердостью 40…58 HRC, чугунов твердостью до 300 НВ с подачами до 0,25 мм/об и глубиной до 2,5 мм
- композит 10 (гексанит-Р) используют для тонкого, чистового и получистового точения и фрезерования с ударами деталей из закаленных сталей твердостью не выше 58 HRC, чугунов любой твердости, сплавов ВК15, ВК20, ВК25 с подачей до 0,15 мм/об и глубиной резания до 0,6 мм
При этом период стойкости инструментов возрастает в десятки раз по сравнению с другими инструментальными материалами.
Применяемые для лезвийного инструмента синтетические сверхтвердые материалы (СТМ) являются плотными модификациями углерода и нитрида бора.
Алмаз и плотные модификации нитрида бора, имеющие тетраэдрическое распределение атомов в решетке, являются самыми твердыми структурами.
Синтетический алмаз и кубический нитрид бора получают методом каталитического синтеза и безкатализаторного синтезов плотных модификаций нитрида бора при статическом сжатии.
Применение алмаза и нитрида бора для изготовления лезвийного инструмента стало возможным после их получения в виде крупных поликристаллических образований.
В настоящее время существует большое разнообразие СТМ на основе плотных модификаций нитрида бора. Они различаются технологией их получения, структурой и основными физико-механическими свойствами.
Технология их получения основана на трех физико-химических процессах:
1) фазовом переходе графитоподобного нитрида бора в кубический:
BN Gp ® BN Cub
2) фазовом переходе вюрцитного нитрида бора в кубический:
BNVtc ® BN Cub
3) спекании частиц BN Cub .
Уникальные физические и химические свойства (высокая химическая устойчивость, твердость, износостойкость) этих материалов объясняются чисто ковалентным характером связи атомов в нитриде бора в сочетании с высокой локализацией валентных электронов у атомов.
Термостойкость инструментального материала является его важной характеристикой. Приводимый в литературе широкий интервал значений термической устойчивости BN (600–1450°С) объясняется как сложностью физико-химических процессов, происходящих при нагреве BN, так и неопределенностью в какой-то степени термина «термостойкость» применительно к СТМ.
При рассмотрении термостойкости поликристаллических СТМ на основе алмаза и плотных модификаций нитрида бора (они часто являются композиционными и количество связующего в них может достигать 40%) следует учитывать, что их термостойкость может определяться как термической устойчивостью BN и алмаза, так и изменением при нагреве свойств связующего и примесей.
В свою очередь, термическая устойчивость алмаза и BN на воздухе определяется как термической стабильностью фаз высокого давления, так и их химической стойкостью в данных условиях, в основном относительно окислительных процессов. Следовательно, термическая устойчивость связана с одновременным протеканием двух процессов: окислением алмаза и плотных модификаций нитрида бора кислородом воздуха и обратным фазовым переходом (графитизацией), поскольку они находятся в термодинамически неравновесном состоянии.
По технологии получения СТМ на основе алмаза можно разделить на две группы:
1) поликристаллы алмаза, получаемые в результате фазового перехода графита в алмаз;
2) поликристаллы алмаза, получаемые спеканием алмазных зерен.
Наиболее часто встречающийся размер зерен – примерно 2,2мкм, а зерен, размер которых превышает 6 мкм, практически нет.
Прочность керамики зависит от среднего размера зерна и, например, для оксидной керамики снижается от 3,80–4,20 ГПа до 2,55–3,00 ГПа при увеличении размеров зерен соответственно от 2–3 до 5,8–6,5 мкм.
У оксидно-карбидной керамики гранулометрический состав еще более тонкозернистый, и средний размер зерен Al 2 O 3 в основном меньше 2 мкм, а размер зерен карбида титана составляет 1–3 мкм.
Существенным недостатком керамики является ее хрупкость – чувствительность к механическим и термическим ударным нагрузкам. Хрупкость керамики оценивается коэффициентом трещиностойкости – K С.
Коэффициент трещиностойкости K С, или критический коэффициент интенсивности напряжений в вершине трещины, является характеристикой сопротивления разрушению материалов.
Высокие твердость, прочность и модуль упругости, сложность механической обработки и небольшие размеры образцов из СТМ ограничивают применение большинства используемых в настоящее время методов определения коэффициента трещиностойкости.
Для определения коэффициента трещиностойкости – K С СТМ используют метод диаметрального сжатия диска с трещиной и метод определения вязкости разрушения керамики по внедрению индентора.
Для устранения хрупкости керамики разработаны различные составы оксидно-карбидной керамики.
Включение в керамику на основе оксида алюминия моноклинной двуокиси циркония ZrO 2 вызывает улучшение структуры и тем самым заметно повышает ее прочность.
Инструмент, оснащенный поликристаллическими алмазами (ПКА), предназначен для чистовой обработки цветных металлов и сплавов, неметаллических материалов вместо твердосплавного инструмента.
Композит 01 и композит 02 – поликристаллы из кубического нитрида бора (КНБ) с минимальным количеством примесей – применяют для тонкого и чистового точения, преимущественно без удара, и торцового фрезерования закаленных сталей и чугунов любой твердости, твердых сплавов (Со > 15%) с глубиной резания 0,05–0,50 мм (максимально допустимая глубина резания 1,0 мм).
Композит 05 – поликристаллы, спеченные из зерен КНБ со связкой, – применяют для предварительного и окончательного точения без удара закаленных сталей (HRC < 60) и чугунов любой твердости с глубиной резания 0,05–3,00 мм, а также для торцового фрезерования заготовок из чугуна любой твердости, в т. ч. по корке, с глубиной резания 0,05–6,00 мм.
Композит 10 и двухслойные пластины из композита 10Д (композит 10 на подложке из твердого сплава) – поликристаллы на основе вюрцитоподобного нитрида бора (ВНБ) – применяют для предварительного и окончательного точения с ударом и без удара и торцового фрезерования сталей и чугунов любой твердости, твердых сплавов (Со > 15%) с глубиной резания 0,05–3,00 мм, прерывистого точения (наличие на обрабатываемой поверхности отверстий, пазов, инородных включений).
Таким образом, инструменты из СТМ на основе нитрида бора и алмаза имеют свои области применения и практически не конкурируют друг с другом.
Износ резцов из композитов 01, 02 и 10 – сложный процесс с преобладанием при непрерывном точении адгезионных явлений.
С увеличением контактных температур в зоне резания свыше 1000°С возрастает роль теплового и химического факторов – интенсифицируются:
– диффузия;
– химический распад нитрида бора;
– фазовый α-переход;
– абразивно-механическое изнашивание.
Поэтому при точении сталей со скоростями 160–190 м/мин износ резко возрастает, а при v > 220 м/мин становится катастрофическим почти независимо от твердости стали.
При прерывистом точении (с ударом) преобладает абразивно-механическое изнашивание с выкрашиванием и вырывом отдельных частиц (зерен) инструментального материала; роль механического удара возрастает при увеличении твердости матрицы обрабатываемого материала и объемного содержания карбидов, нитридов и т. п.
Наибольшее влияние на износ и стойкость резцов при непрерывном точении сталей оказывает скорость резания, при точении с ударом – скорость и подача, при точении чугунов – подача, причем обрабатываемость ковких чугунов ниже, чем серых и высокопрочных.
Порядок выполнения работы
1. Изучите марки и химический состав сталей и сплавов, классификацию сталей по способу изготовления и по назначению в зависимости от содержания хрома, никеля и меди, требования к макроструктуре и микроструктуре, нормирование прокаливаемости. Обратите внимание на порядок отбора образцов для проверки твердости, микроструктуры, глубины обезуглероженного слоя, качества поверхности, излома.
2. Исследуйте микроструктуру образцов стали У10. Оцените микроструктуру термически обработанной стали, проведя исследование под микроскопом МИ-1. Зафиксируйте микроструктуру в компьютере и распечатайте.
При составлении отчета необходимо дать краткое описание теоретических основ строения, свойств материалов для режущих инструментов из инструментальных углеродистых, быстрорежущих сталей, твердых, сверхтвердых сплавов и керамических материалов. Привести полученные при исследовании под микроскопом МИ-1 фотографии микроструктуры стали У10, в подрисуночной подписи укажите режим термообработки и структурные составляющие. Результаты измерений основных параметров нескольких включений рассматриваемой стали занести в табл. 3.19.
Таблица 3.19
Контрольные вопросы
1. Классификация материалов для режущих инструментов.
2. Строение и свойства инструментальных углеродистых сталей.
3. Строение и свойства штамповых сталей.
4. Строение и свойства быстрорежущих сталей.
5. Строение и свойства твердых и сверхтвердых инструментальных сплавов.
6. Строение и свойства керамических инструментальных материалов.
7. Структура инструментальных углеродистых сталей.
8. Основные свойства, которыми должен обладать материал для режущих инструментов.
9. Износостойкость и теплостойкость режущих инструментов.
10. Чем определяется температура нагрева режущей кромки инструментов?
11. Химический состав и режимы термической обработки наиболее применяемых инструментальных сталей.
12. Прокаливаемость углеродистых сталей, балл прокаливаемости, распределение твердости.
13. Влияние содержания углерода на свойства углеродистых инструментальных сталей.
14. Чем определяется температура отпуска инструментов?
15. Горячая твердость и красностойкость быстрорежущей стали.
16. Обратимая и необратимая твердость быстрорежущих сталей.
17. Каким образом структурно создается красностойкость быстрорежущих сталей.
18. Как характеризуется красностойкость, ее обозначение.
19. Режимы термической обработки инструментов из быстрорежущей стали, обработка холодом, многократный отпуск.
20. Стали для горячих штампов, их жаропрочность,термостойкость,вязкость.
21. Рабочие температуры резания инструмента из твердых сплавов.
22. Твердость металлокерамических твердых сплавов, чем она определяется?
23. Стали, применяемые для лезвийного инструмента.
24. Чем объясняются уникальные физические и химические свойства (высокая химическая устойчивость, твердость, износостойкость) синтетических сверхтвердых материалов?
25. Существенный недостаток керамики.
26. Как оценивается хрупкость керамики?
Исследование зависимостей
состав – структура – свойства Для чугунов
Цель работы: изучение строения, состава и свойств передельных и машиностроительных чугунов; их классификация и применение.
Материалы и оборудование: коллекция нетравленых шлифов чугунов; металлографический комплекс, включающий оптический микроскоп МИ-1, цифровую камеру Nikon Colorpix-4300 с фотоадаптером; травитель (4%-ный раствор HNO 3 в спирте).
Теоретическая часть
Чугунами называют железоуглеродистые сплавы, содержащие более 2,14% углерода и постоянные примеси – кремний, марганец, серу и фосфор.
Чугуны имеют более низкие механические свойства, чем стали, т. к. повышенное содержание углерода в них приводит либо к образованию твердой и хрупкой эвтектики, либо к появлению свободного углерода в виде графитных включений различной конфигурации, нарушающих сплошность металлической структуры. Поэтому чугуны применяются для изготовления деталей, не испытывающих значительных растягивающих и ударных нагрузок. Чугун находит широкое применение в машиностроении в качестве литейного материала. Однако наличие графита дает и ряд преимуществ чугунам перед сталью:
– они легче обрабатываются резанием (образуется ломкая стружка);
– обладают лучшими антифрикционными свойствами (графит обеспечивает дополнительную смазку поверхностей трения);
– обладают более высокой износоустойчивостью (низкий коэффициент трения);
– чугуны не чувствительны к внешним концентраторам напряжений (выточкам, отверстиям, дефектам поверхности).
Чугуны обладают высокой жидкотекучестью, хорошо заполняют литейную форму, имеют малую усадку, поэтому они применяются для изготовления отливок. Детали, полученные из чугунных отливок, значительно дешевле, чем изготовленные обработкой резанием из горячекатанных стальных профилей или из поковок и штамповок.
Химический состав и в частности содержание углерода не характеризуют достаточно надежно свойства чугуна: структура чугуна и его основные свойства зависят не только от химического состава, но и от процесса выплавки, условий охлаждения отливки и режима термической обработки.
Углерод в структуре чугуна может наблюдаться в виде графита и цементита.
В зависимости от того, в каком состоянии находится углерод, чугуны подразделяются на две группы:
1) чугуны, в которых весь углерод находится в связанном состоянии в виде цементита или других карбидов;
2) чугуны, в которых весь углерод или часть его находится в свободном состоянии в виде графита.
К первой группе относят белые чугуны, а ко второй – серые, ковкие и высокопрочные.
По назначению чугуны подразделяют:
1) на передельные;
2) машиностроительные.
Передельные в основном используются для получения стали и ковкого чугуна, а машиностроительные – для изготовления отливок деталей в различных отраслях промышленности: автотракторостроении, станкостроении, сельскохозяйственном машиностроении и т. д.
Белые чугуны
В белых чугунах весь углерод находится в химически связанном состоянии (в виде цементита), т. е. кристаллизуются они, как и углеродистые стали, по метастабильной диаграмме Fe – Fe 3 C. Свое название они получили по специфическому матово-белому цвету излома, обусловленному наличием в структуре цементита.
Белые чугуны очень хрупки и тверды, плохо поддаются механической обработке режущим инструментом. Чисто белые чугуны в машиностроении используется редко, они обычно идут на передел в сталь или используются для получения ковкого чугуна.
Структура белых чугунов при нормальной температуре зависит от содержания углерода и соответствует диаграмме равновесного состояния «железо-цементит». Образуется такая структура в результате ускоренного охлаждения при литье.
В зависимости от содержания углерода белые чугуны делятся:
1) на доэвтектические, содержащие от 2 до 4,3% углерода; состоят из перлита, вторичного цементита и ледебурита;
2) эвтектические, содержащие 4,3% углерода, состоят из ледебурита;
3) эаэвтектические, содержащие от 4,3 до 6,67% углерода, состоят из перлита, первичного цементита и ледебурита.
а б в
Рис. 4.1. Микроструктура белых чугунов, × 200:
а – доэвтектический (ледебурит, перлит + вторичный цементит);
б – эвтектический (ледебурит);
в – заэвтектический (ледебурит + первичный цементит)
Перлит в белом чугуне наблюдается под микроскопом в виде темных зерен, а ледебурит – в виде отдельных участков колоний. Каждый такой участок представляет собой смесь мелких округленных или вытянутых темных зерен перлита, равномерно распределенных в белой цементитной основе (рис. 4.1, а ). Вторичный цементит наблюдается в виде светлых зерен.
С увеличением концентрации углерода в доэвтектическом чугуне доля ледебурита в структуре увеличивается за счет уменьшения участков структуры, занимаемых перлитом и вторичным цементитом.
Эвтектический чугун состоит из одной структурной составляющей ‑ ледебурита, представляющего собой равномерную механическую смесь перлита с цементитом (рис. 4.1, б ).
Структура заэвтектического чугуна состоит из первичного цементита и ледебурита (рис. 4.1, в ). С увеличением углерода количество первичного цементита в структуре возрастает.
Похожая информация.