Методы статистического контроля качества изделий. Статистический контроль процессов Методы осуществления контроля качества статистической информации

Статистический контроль процессов возник в 1931 г. Он был предложен ученым Вальтером Шухартом в книге “Экономический контроль качества производимой продукции”. В то время Шухарт работал статистиком в компании Bell Laboratories. Он заметил, что в производственных процессах существуют такие данные, которые, после статистической обработки, могут сигнализировать, находится ли процесс под контролем или в нем возникли какие-либо отклонения (вызванные причинами, не являющимися неотъемлемой характеристикой процесса). Контрольные листки и контрольные карты, которые используются в настоящее время, основаны на работах Шухарта. В статистическом контроле процессов может потребоваться использование любого из статистических методов, о которых рассказывалось в пункте 3.4 “Методы анализа качества”.

Хотя статистический контроль процессов первоначально использовался только для производственных процессов, он может применяться практически к любым процессам. Все, что делается сотрудниками может рассматриваться как процессы. На каждый процесс влияет множество факторов (используемое оборудование, материалы, методы и рабочие инструкции, измерения и сотрудники, занятые в процессе). Если кроме этого на процесс ничего не влияет, а все указанные факторы работают безупречно и как должны, то процесс статистически контролируем. Это означает, что никакие побочные причины не воздействуют на процесс. Все сбои устранены. Согласно положению Шухарта, это не означает, что все 100% выпускаемой продукции будут безупречными, что в процессе нет вариаций. Каждому процессу присущи естественные вариации и отклонения, влияющие на выход Они составляют 3 единицы дефектной продукции на 1000 (под дефектной здесь понимается продукция, выходящая за допустимые пределы ‑ ±3s).

То, что каждому процессу присущи естественные вариации, можно проиллюстрировать следующим образом: например, диаметры вытачиваемых на станке цилиндров редко будут равны ровно 17 мм. Их значение будет варьироваться вокруг 17 мм хотя бы в пределах точности измерительного прибора и контрольного оборудования. На самом деле, будет еще много неотъемлемых от процесса причин, вызывающих это варьирование.

В статистическом контроле процессов с помощью статистических методов (и только!) определяется, какие отклонения от идеала являются нормальными для данного процесса (не следует путать эти “нормальные” отклонения с техническими характеристиками оборудования, естественно, технические характеристики влияют на процесс, но эти “нормальные” отклонения определяются статистически).

Статистический контроль процессов не исключает полностью вариации и отклонения продукции от идеальной в процессах. Но он позволяет контролировать процесс и отличать естественные вариации, присутствующие во всех процессах, от сбоев, вызванных какими-то дополнительными причинами. Он является основой для улучшения процесса и бездефектного производства. После того, как все причины сбоев выявлены и устранены и осталась только естественная вариация, считается, что процесс находится в состоянии статистического контроля. Когда это состояние достигнуто, процесс является стабильным и 99.73% продукции не выходят за статистические пределы контроля (верхний и нижний контрольные пределы, они уже упоминались в пункте 3.4.8. “Контрольная карта”). Только после этого можно заниматься улучшением процесса. Итак:

Статистический контроль процессов ‑ это статистический метод разделения вариаций, вызванных сбоями в процессе от “естественных” вариаций, являющихся неотъемлемой частью процесса. Целью статистического контроля процессов является выявить и устранить сбои и установить и поддерживать стабильность процесса, сделав возможным дальнейшие улучшения.

Статистический контроль процессов, являясь частью всеобщего управления качеством, позволяет повысить качество продукции и сократить издержки. Статистический контроль процессов делает значительно более эффективными следующие процессы:

· Контроль вариаций.

· Непрерывное улучшение.

· Предсказуемость процессов.

· Устранение потерь.

· Выборочный контроль продукции.

Рассмотрим, что дает статистический контроль процессов в этих процессах.

Контроль вариаций

Как уже говорилось, на процесс влияют два типа факторов ‑ сбои и естественные причины. Статистический контроль процессов позволяет отличить одно от другого. Улучшением процесса является только устранение или минимизация естественных причин. Оно возможно после того, как устранены сбои, иначе сбои не позволяют оценить эффект улучшения.

В отсутствии сбоев распределение количества продукции по значению какой-либо характеристики относительно ее требуемого значения представляет собой колоколообразную кривую. Как строится такое распределение, подробно описано в пункте 3.4.9. “Гистограмма”. Значения этой характеристики у 99.73% единиц продукции не выходят за границу ±3s (рис. 3.9 а). Если в процессе произошел сбой, то большее количество продукции выходит за границу ±3s (рис. 3.9 б). В общем случае в процессе со сбоем не обязательно распределение имеет вид колоколообразной кривой.

Непрерывное улучшение

Для улучшения качества продукции необходимо улучшения процессов ее создания. Улучшение процесса заключается в улучшении его естественных характеристик. Оно может проводиться только после того, как все сбои устранены. При этом само улучшение будет контролируемым и будет возможно создание контрольных листков и контрольных карт для оценки эффектов улучшения. Результаты улучшения процесса можно графически представить как на рис. 3.9 в.

Рис. 3.9 Распределение значений диаметра вытачиваемых цилиндров относительно требуемого значения

Предсказуемость процессов

Статистический контроль процессов позволяет сделать процессы стабильными, повторяемыми и предсказуемыми. Когда процесс находится под контролем, предприятие точно знает его характеристики. Это позволяет точно оценить возможность выполнения того или иного заказа и брать минимально-возможные оценки рисков (что, соответственно, уменьшает стоимость контракта и повышает конкурентоспособность). Если процесс неконтролируем, то есть риск либо не выполнить условия контракта, либо не получить контракт из-за высокой цены (если брать максимально-возможные риски). В любом случае менеджер потратит массу нервов на получение контракта и на выполнение его условий.

Устранение потерь

Если процесс находится под статистическим контролем, то это позволяет выявлять сбои сразу после их возникновения, что сокращает производство некачественной продукции. Было посчитано, что дешевле организовать статистический контроль процессов, чем исправлять производимый брак.

Контроль продукции

Статистический контроль процессов позволяет оптимальным образом организовать контроль готовой продукции (так, что затраты на него минимальны при приемлемой достоверности). Контроль продукции требует дорогостоящего оборудования и высококвалифицированного (и высокооплачиваемого персонала), так что снижение издержек на контроль весьма существенно. Кроме того, даже стопроцентный контроль готовой продукции выявляет только 80% брака. Если процесс находится под статистическим контролем, то можно определить необходимый объем выборочного контроля и разработать наиболее удобные бланки контрольных листков и контрольных карт. Как уже говорилось, все это делается на основе статистики и детально было разработано Шухартом.

Полномочия операторов

Операторы, осуществляющие статистический контроль процесса и следящие за процессом, должны быть специально обучены. Им должны быть предоставлены соответствующие полномочия по воздействиям на процесс. В мире нет единого мнения об уровне полномочий. Существуют два варианта:

· Оператор при появлении сбоя должен остановить производственный процесс для выявления сбоя.

· Оператор не имеет права останавливать процесс. Он должен сообщить о сбое начальству. Если сбой все же требует остановки, то надо как можно быстрее запустить процесс вновь, возможно, с помощью временных мер. Причины сбоя и способы его устранения, а также само его устранение будет проводиться потом, не задерживая процесс.

Какой из способов лучше, зависит от многих причин и можно сказать только в каждом конкретном случае. Тем не менее, большинство предприятий придерживается мнения, что надо сразу же останавливать процесс и устранять сбой. По их мнению, экономически это более выгодно, т.к. не производится дефектная продукция. Кроме того, если сразу не остановить процесс, то симптомы сбоя могут исчезнуть, его не удастся выявить при техническом обслуживании оборудования и он может проявиться в дальнейшем, нанося больший ущерб.

Смысл статистических методов контроля качества заключается в значительном снижении затрат на его проведение по сравнению c органолептическими (визуальными, слуховыми и т.п.) со сплошным контролем, с одной стороны, и в исключении случайных изменений качества продукции – с другой.

Различаются две области применения статистических методов в производстве (рис. 4.8):

при регулировании хода технологического процесса с целью удержания его в заданных рамках (левая часть схемы);

при приемке изготовленной продукции (правая часть схемы).

Рис. 4.8. Области применения статистических методов управления качеством продукции

Для контроля технологических процессов решаются задачи статистического анализа точности и стабильности технологических процессов и их статистического регулирования. При этом за эталон принимаются допуски на контролируемые параметры, заданные в технологической документации, и задача заключается в жёстком удержании этих параметров в установленных пределах. Может быть поставлена также задача поиска новых режимов выполнения операций с целью повышения качества конечного производства.

Прежде чем браться за применение статистических методов в производственном процессе, необходимо четко представлять цель применения этих методов и выгоду производства от их применения. Очень редко данные используются для заключения о качестве в том виде, в каком они были получены. Обычно для анализа данных используются семь, так называемых, статистических методов или инструментов контроля качества: расслаивание (стратификация) данных; графики; диаграмма Парето; причинно-следственная диаграмма (диаграмма Исикавы или «рыбий скелет»); контрольный листок и гистограмма; диаграмма разброса; контрольные карты.

1. Расслаивание (стратефикация).

При разделении данных на группы в соответствии с их особенностями группы именуют слоями (стратами), а сам процесс разделения – расслаиванием (стратификацией). Желательно, чтобы различия внутри слоя были как можно меньше, а между слоями – как можно больше.

В результатах измерений всегда есть больший или меньший разброс параметров. Если осуществлять стратификацию по факторам, порождающим этот разброс, легко выявить главную причину его появления, уменьшить его и добиться повышения качества продукции.

Применение различных способов расслаивания зависит от конкретных задач. В производстве часто используется способ, называемый 4М, учитывающий факторы, зависящие от: человека (man); машины (machine); материала (material); метода (method).

То есть расслаивание можно осуществить так:

По исполнителям (по полу, стажу работы, квалификации и т.д.);
— по машинам и оборудованию (по новому или старому, марке, типу и т.д.);
— по материалу (по месту производства, партии, виду, качеству сырья и т.д.);
— по способу производства (по температуре, технологическому приему и т.д.).

В торговле может быть расслаивание по районам, фирмам, продавцам, видам товара, сезонам.

Метод расслаивания в чистом виде применяется при расчете стоимости изделия, когда требуется оценка прямых и косвенных расходов отдельно по изделиям и партиям, при оценке прибыли от продажи изделий отдельно по клиентам и по изделиям и т.д. Расслаивание также используется в случае применения других статистических методов: при построении причинно-следственных диаграмм, диаграмм Парето, гистограмм и контрольных карт.

2. Графическое представление данных широко применяется в производственной практике для наглядности и облегчения понимания смысла данных. Различают следующие виды графиков:

А). График, представляющий собой ломанную линию (рис. 4.9), применяется, например, для выражения изменения каких-либо данных с течением времени.

image002

Рис. 4.9. Пример «ломанного» графика и его аппроксимации

Б) Круговой и ленточный графики (рис. 4.10 и 4.11) применяются для выражения процентного соотношения рассматриваемых данных.

image003

Рис. 4.10. Пример кругового графика

Соотношение составляющих себестоимости производства:

1 – себестоимость производства продукции в целом;

2 – косвенные расходы;

3 – прямые расходы и т.д.

image004

Рис. 4.11. Пример ленточного графика

На рисунке 4.11 показано соотношение сумм выручки от продажи по отдельным видам изделий (A,B,C), видна тенденция: изделие B перспективно, а A и C – нет.

В). Z-образный график (рис. 4.12) применяется для выражения условий достижений данных значений. Например, для оценки общей тенденции при регистрации по месяцам фактических данных (объём сбыта, объём производства и т.д.)

График строится следующим образом:

1) откладываются значения параметра (например, объём сбыта) по месяцам (за период одного года) с января по декабрь и соединяются отрезками прямой (ломаная линия 1 на рис. 4.12);

2) вычисляется кумулятивная сумма за каждый месяц и строится соответствующий график (ломаная линия 2 на рис. 4.12);

3) вычисляются итоговые значения (меняющийся итог) и строится соответствующий график. За меняющийся итог в данном случае принимается итог за год, предшествующий данному месяцу (ломаная линия 3 на рис. 4.12).

image005

Рис. 4.12. Пример Z-образного графика.

Ось ординат – выручка по месяцам, ось абсцисс – месяцы года.

По меняющемуся итогу можно определить тенденцию изменения за длительный период. Вместо меняющегося итога можно наносить на график планируемые значения и проверять условия их достижения.

Г). Столбчатый график (рис. 4.13) представляет количественную зависимость, выражаемую высотой столбика, таких факторов, как себестоимость изделия от его вида, сумма потерь в результате брака от процесса и т.д. Разновидности столбчатого графика – гистограмма и диаграмма Парето. При построении графика по оси ординат откладывают количество факторов, влияющих на изучаемый процесс (в данном случае изучение стимулов к покупке изделий). По оси абсцисс – факторы, каждому из которых соответствует высота столбика, зависящая от числа (частоты) проявления данного фактора.

image006

Рис. 4.13. Пример столбчатого графика.

1 – число стимулов к покупке; 2 – стимулы к покупке;

3 – качество; 4 – снижение цены;

5 – гарантийные сроки; 6 – дизайн;

7 –доставка; 8 – прочие;

Если упорядочить стимулы к покупке по частоте их проявления и построить кумулятивную сумму, то получим диаграмму Парето.

3. Диаграмма Парето.

Схема, построенная на основе группирования по дискретным признакам, ранжированная в порядке убывания (например, по частоте появления) и показывающая кумулятивную (накопленную) частоту, называется диаграммой Парето (рис. 4.10). Парето – итальянский экономист и социолог, использовавший свою диаграмму для анализа богатств Италии.

image007

Рис. 4.14. Пример диаграммы Парето:

1 – ошибки в процессе производства; 2 – некачественное сырье;

3 – некачественные орудия труда; 4 – некачественные шаблоны;

5 – некачественные чертежи; 6 – прочее;

А – относительная кумулятивная (накопленная) частота, %;

n – число бракованных единиц продукции.

Приведенная диаграмма построена на основе группирования бракованной продукции по видам брака и расположения в порядке убывания числа единиц бракованной продукции каждого вида. Диаграмму Парето можно использовать очень широко. С ее помощью можно оценить эффективность принятых мер по улучшению качества продукции, построив ее до и после внесения изменений.

4. Причинно-следственная диаграмма (рис. 4.15).

image008

а) пример условной диаграммы, где:

1 – факторы (причины); 2 – большая «кость»;

3 – малая «кость»; 4 – средняя «кость»;

5 – «хребет»; 6 – характеристика (результат).

image009

б) пример причинно-следственной диаграммы факторов, влияющих на качество продукции.

Рис. 4.15 Примеры причинно-следственной диаграммы.

Причинно-следственная диаграмма используется, когда требуется исследовать и изобразить возможные причины определенной проблемы. Ее применение позволяет выявить и сгруппировать условия и факторы, влияющие на данную проблему.

Рассмотрим формупричинно-следственной диаграммы на рис. 4.15 (она называется еще «рыбий скелет» или диаграмма Исикавы).

Порядок составления диаграммы:

1. Выбирается проблема для решения – «хребет».
2. Выявляются наиболее существенные факторы и условия, влияющие на проблему – причины первого порядка.
3. Выявляется совокупность причин, влияющих на существенные факторы и условия (причины 2-, 3- и последующих порядков).
4. Анализируется диаграмма: факторы и условия расставляются по значимости, устанавливаются те причины, которые в данный момент поддаются корректировке..
5. Составляется план дальнейших действий.

5. Контрольный листок (таблица накопленных частот) составляется для построения гистограммы распределения, включает в себя следующие графы: (табл.4.4).

Таблица 4.4

На основании контрольного листка строится гистограмма (рис. 4.16), или, при большом количестве измерений, кривая распределения плотности вероятностей (рис. 4.17).

image010

Рис. 4.16. Пример представления данных в виде гистограммы

image011

Рис. 4.17. Виды кривых распределения плотности вероятностей.

Гистограмма представляет собой столбчатый график и применяется для наглядного изображения распределения конкретных значений параметра по частоте появления за определенный период времени. При нанесении на график допустимых значений параметра можно определить, как часто этот параметр попадает в допустимый диапазон или выходит за его предел.

При исследовании гистограммы можно выяснить, в удовлетворительном ли состоянии находятся партия изделий и технологический процесс. Рассматривают следующие вопросы:

· какова ширина распределения по отношению к ширине допуска;

· каков центр распределения по отношению к центру поля допуска;

· какова форма распределения.

В случае, если

а) форма распределения симметрична, то имеется запас по полю допуска, центр распределения и центр поля допуска совпадают – качество партии в удовлетворительном состоянии;

б) центр распределения смещен вправо, то есть опасение, что среди изделий (в остальной части партии) могут находиться дефектные изделия, выходящие за верхний предел допуска. Проверяют, нет ли систематической ошибки в измерительных приборах. Если нет, то продолжают выпускать продукцию, отрегулировав операцию и сместив размеры так, чтобы центр распределения и центр поля допуска совпадали;

в) центр распределения расположен правильно, однако ширина распределения совпадает с шириной поля допуска. Есть опасения, что при рассмотрении всей партии появятся дефектные изделия. Необходимо исследовать точность оборудования, условия обработки и т.д. либо расширить поле допуска;

г) центр распределения смещен, что свидетельствует о присутствии дефектных изделий. Необходимо путем регулировки переместить центр распределения в центр поля допуска и либо сузить ширину распределения, либо пересмотреть допуск;

д) ситуация аналогична предыдущей, аналогичны и меры воздействия;

е) в распределении 2 пика, хотя образцы взяты из одной партии. Объясняется это либо тем, что сырьё было 2-х разных сортов, либо в процессе работы была изменена настройка станка, либо в 1 партию соединили изделия, обработанные на 2-х разных станках. В этом случае следует производить обследование послойно;

ж) и ширина, и центр распределения – в норме, однако незначительная часть изделий выходит за верхний предел допуска и, отделяясь, образует обособленный островок. Возможно, эти изделия – часть дефектных, которые вследствие небрежности были перемешаны с доброкачественными в общем потоке технологического процесса. Необходимо выяснить причину и устранить её.

6. Диаграмма разброса (рассеяния) применяется для выявления зависимости (корреляции) одних показателей от других или для определения степени корреляции между n парами данных для переменных x и y:

(x 1 ,y 1), (x 2 ,y 2), …, (x n , y n).

Эти данные наносятся на график (диаграмму разброса), и для них вычисляется коэффициент корреляции.

Рассмотрим различные варианты диаграмм разброса (или полей корреляции) на рис. 4.18:

image012

Рис. 4.18. Варианты диаграмм разброса

В случае:

а ) можно говорить о положительной корреляции (с ростом x увеличивается y );

б ) проявляется отрицательная корреляция (с ростом x уменьшается y );

7. Контрольная карта.

Одним из способов достижения удовлетворительного качества и поддержания его на этом уровне является применение контрольных карт. Для управления качеством технологического процесса необходимо иметь возможность контролировать те моменты, когда выпускаемая продукция отклоняется от заданных техническими условиями допусков. Рассмотрим простой пример. Проследим за работой токарного станка в течение определённого времени и будем измерять диаметр детали, изготавливаемой на нем (за смену, час). По полученным результатам построим график и получим простейшую контрольную карту (рис. 4.20):

image013

Рис. 4.20. Пример контрольной карты

В точке 6 произошла разладка технологического процесса, необходимо его регулирование. Положение ВКГ и НКГ определяется аналитически либо по специальным таблицам и зависит от объёма выборки. При достаточно большом объеме выборки пределы ВКГ и НКГ определяют по формулам

НКГ = –3 ,

image015 .

ВКГ и НКГ служат для предупреждения разладки процесса, когда изделия еще соответствуют техническим требованиям.

Контрольные карты применяются, когда требуется установить характер неисправностей и дать оценку стабильности процесса; когда необходимо установить, нуждается ли процесс в регулировании или его необходимо оставить таким, каков он есть.

Контрольной картой можно также подтвердить улучшение процесса.

Контрольная карта является средством распознания отклонений из-за неслучайных или особых причин от вероятных изменений, присущих процессу. Вероятные изменения редко повторяются в прогнозируемых пределах. Отклонения из-за неслучайных или особых причин сигнализируют о том, что некоторые факторы, влияющие на процесс, необходимо идентифицировать, расследовать и поставить под контроль.

Контрольные карты основываются на математической статистике. Они используют рабочие данные для установления пределов, в рамках которых будут ожидаться предстоящие исследования, если процесс останется неэффективным из-за неслучайных или особых причин.

Информация о контрольных картах содержится и в международных стандартах ИСО 7870, ИСО 8258.

Наибольшее распространение получили контрольные карты среднего значения X и контрольные карты размаха R, которые используются совместно или раздельно. Контролироваться должны естественные колебания между пределами контроля. Нужно убедиться, что выбран правильный тип контрольной карты для определенного типа данных. Данные должны быть взяты точно в той последовательности, в какой собраны, иначе они теряют смысл. Не следует вносить изменения в процесс в период сбора данных. Данные должны отражать, как процесс идет естественным образом.

Контрольная карта может указать на наличие потенциальных проблем до того, как начнется выпуск дефектной продукции.

Принято говорить, что процесс вышел из-под контроля, если одна или более точек вышли за пределы контроля.

Существуют два основных типа контрольных карт: для качественных (годен – негоден) и для количественных признаков. Для качественных признаков возможны четыре вида контрольных карт: число дефектов на единицу продукции; число дефектов в выборке; доля дефектных изделий в выборке; число дефектных изделий в выборке. При этом в первом и третьем случаях объем выборки будет переменным, а во втором и четвертом – постоянным.

Таким образом, целями применения контрольных карт могут быть:

выявление неуправляемого процесса;

контроль за управляемым процессом;

оценивание возможностей процесса.

При крупносерийном и массовом производстве широкое распространение получили методы статистического контроля качества (statistical quality control(англ.), SQC). Наиболее известными среди них стали «семь инструментов контроля качества», которые сначала широко применялись в кружках качества в Японии, а затем и в других странах, благодаря своей эффективности и доступности для рядовых работников предприятий.

В состав этих «семи инструментов» входят: диаграмма Парето, причинно-следственная диаграмма, контрольные карты, гистограммы, метод расслоения, графики, диаграмма разброса. Краткое содержание этих методов применительно к управлению качеством заключается в следующем:

Метод расслоения (послойный анализ, районированная выборка-stratification(англ.)) применяют для выяснения причин разброса характеристик изделий. Существо метода заключается в разделении (расслоении) полученных характеристик в зависимости от различных факторов: квалификации работников, качества исходных материалов, методов работ, характеристик оборудования и т. д. При этом определяется влияние того или иного фактора на характеристики изделия, что позволяет принять необходимые меры для устранения их недопустимого разброса.

Графики (диаграммы) используются для наглядности и облегчения понимания взаимозависимости количественных величин или их изменений во времени. Чаще всего применяются линейные, круговые, столбчатые и ленточные графики.

Диаграмма Парето (Pareto diagram), названная так по имени ее автора, итальянского ученого-экономиста Парето (1848-1923), позволяет наглядно представить величину потерь в зависимости от различных дефектов. (см. кривая Парето). Благодаря этому можно сначала сосредоточить внимание на устранении тех дефектов, которые приводят к наибольшим потерям. Для выяснения причин этих дефектов целесообразно дополнительно использовать причинно-следственную диаграмму. После выяснения причин и устранения дефектов вновь строится диаграмма Парето с целью проверки эффективности принятых мер.

Причинно-следственная диаграмма (cause and effect diagram) применяется, как правило, при анализе дефектов, приводящих к наибольшим потерям. Она позволяет выявить причины таких дефектов и сосредоточиться на устранении этих причин. При этом анализируются четыре основных причинных фактора: человек, машина (оборудование), материал и метод работ. При анализе этих факторов выявляются вторичные, а может быть, и третичные причины, приводящие к дефектам и подлежащие устранению. Поэтому для анализа дефектов и построения диаграммы необходимо определить максимальное число причин, которые могут иметь отношение к допущенным дефектам.

Такую диаграмму в виде рыбьего скелета предложил японский ученый Каору Исикава. Его диаграмму называют также «ветвистой схемой характерных факторов». Иногда ее еще называют диаграммой «четыре М» — по составу основных факторов: Man (человек), Method (метод), Material (материал), Machine (машина). Диаграмма Исикавы:

img-lGi0ix

Гистограммапредставляет собой столбчатый график и применяется для наглядного изображения распределения конкретных значений параметра по частоте повторения за определенный период времени (неделя, месяц, год).

При нанесении на график допустимых значений параметра можно определить, как часто этот параметр попадает в допустимый диапазон, смещается в пределах допуска или выходит за его пределы.

Полученные данные анализируют, применяя другие методы:

    потери от брака в зависимости от различных дефектов исследуют с помощью диаграммы Парето;

    причины дефектов определяют с помощью причинно-следственной диаграммы, метода расслоения и диаграммы разброса;

    изменение характеристик во времени определяют по контрольным картам.

Диаграмма разброса (Scatter diagram — корреляционная диаграмма) строится как график зависимости между двумя параметрами. Это позволяет определить, есть ли взаимосвязь между этими параметрами. И если такая взаимосвязь существует, можно устранить отклонение одного параметра, воздействуя на другой.

Контрольная карта (Control chart) — это разновидность графика, который отличается наличием контрольных границ, обозначающих допустимый диапазон разброса характеристик в обычных условиях течения процесса. (см. Контрольная карта Шухарта). Выход характеристик за пределы контрольных границ означает нарушение стабильности процесса и требует проведения анализа причин и принятия соответствующих мер.

Перечисленные «семь инструментов» помогают решать большинство возникающих проблем качества. Для решения более сложных проблем дополнительно могут применяться «семь новых инструментов контроля качества»: Диаграмма сродства, Диаграмма зависимостей, Древовидная схема, Матричная диаграмма, Стрелочная диаграмма, Диаграмма планирования оценки процесса, Анализ матричных данных.

Для подробного изучения статистических методов следует обратиться к специальной литературе, а также — к международному стандарту ИСО 10017 по статистическим методам

Стандартизацией в области статистических методов на международном уровне занимается технический комитет Международной организации по стандартизации ИСО/ТК 69 «Применение статистических методов» . Материалы этого комитета могут представлять интерес для тех, кто по роду работ связан с использованием статистических методов.

Кроме перечисленных статистических методов, для контроля и управления качеством применяется метод «Шесть сигм» и методыТагути.

Метод «Шесть сигм» используется для статистического управления технологическим процессом с целью снижения вероятности отказов продукции. Наименьшая вероятность отказов достигается при условии стабильного попадания шести среднеквадратичных отклонений от номинала (плюс — минус три сигмы) в заданное поле допуска с определённым запасом. Для этого требуется высокая точность изготовления деталей, обеспечивающая минимальные значения сигм.

Традиционно статистический контроль процессов в производстве представляет собой случайный выбор части продукции и её тестирование. Отклонения непрерывно проверяются на допустимость и где необходимо корректируются ещё до производства бракованных частей.

Суржанская И.Ю.

Балаково 2010

Введение………………………………………………………………………….3

1 Статистический контроль качества продукции…………………………….4

2 Методы всеобщего управления качеством…………………………………6

Заключение……………………………………………………………….…….20

Список используемой литературы……………………………………..…….21

Введение

Проблема качества актуальна абсолютно для всех товаров и услуг. Особенно остро это проявляется при переходе к рыночной экономике. К работе в условиях жесткой конкуренции российским предпринимателям нужно быть готовыми уже сегодня. Предприятия любой формы собственности, не уделяющие внимания вопросам качества, будут просто разорены, им не помогут никакие протекционистские меры государства.

Важнейшим источником роста эффективности производства является постоянное повышение технического уровня и качества выпускаемой продукции. Для технических систем характерна жесткая функциональная интеграция всех элементов, поэтому в них нет второстепенных элементов, которые могут быть некачественно спроектированы и изготовлены. Таким образом, современный уровень развития НТП значительно ужесточил требования к техническому уровню и качеству изделий в целом и их отдельных элементов.

В отраслях промышленности статистические методы применяются для проведения анализа качества продукции и процесса. Анализом качества является анализ, посредством которого с помощью данных и статистических методов определяется отношение между точными и замененными качественными характеристиками. Анализом процесса является анализ, позволяющий уяснить связь между причинными факторами и такими результатами, как качество, стоимость, производительность и т.д. Контроль процесса предусматривает выявление причинных факторов, влияющих на бесперебойное функционирование производственного процесса. Качество, стоимость и производительность являются результатами процесса контроля.

Статистический контроль качества продукции

В отраслях промышленности статистические методы применяются для проведения анализа качества продукции и процесса. Анализом качества является анализ, посредством которого с помощью данных и статистических методов определяется отношение между точными и замененными качественными характеристиками.

Анализом процесса является анализ, позволяющий уяснить связь между причинными факторами и такими результатами, как качество, стоимость, производительность и т.д.

Контроль процесса предусматривает выявление причинных факторов, влияющих на бесперебойное функционирование производственного процесса 1 . Качество, стоимость и производительность являются результатами процесса контроля.

Статистический контроль качества продукции в настоящее время приобретают все большее признание и распространение в промышленности. Научные методы статистического контроля качества продукции используются в следующих отраслях: в машиностроении, в легкой промышленности, в области коммунальных услуг.

Основной задачей статистического контроля является обеспечение производства пригодной к употреблению продукции и оказание полезных услуг с наименьшими затратами.

Статистический контроль качества продукции дает значительные результаты по следующим показателям:

· повышение качества закупаемого сырья;

· экономия сырья и рабочей силы;

_________________________________________

1 Аристов О.В. Управление качеством: Учеб. для студентов вузов. 2004г. Стр 65

· повышение качества производимой продукции;

· снижение затрат на проведение контроля;

· снижение количества брака;

· улучшение взаимосвязи между производством и потребителем;

· облегчение перехода производства с одного вида продукции на другой.

Главная задача – не просто увеличить качество продукции, а увеличить количество такой продукции, которая была бы пригодной к употреблению.

Два основных понятия в контроле качества – это измерение контролируемых параметров и их распределение. Для того чтобы можно было судить о качестве продукции необязательно измерить такие параметры, как прочность материала, бумаги, масса предмета, качество окраски и т.д.

Второе понятие – распределение значений контролируемого параметра – основано на том, что нет двух совершенно одинаковых по величине параметров у одних и тех же изделий; по мере того, как измерения становятся все более точными, в результатах измерений параметра обнаруживаются небольшие расхождения.

Изменчивость «поведения» контролируемого параметра бывает 2 видов. Первый случай – когда значения его составляют совокупность случайных величин, образующихся в нормальных условиях; второй – когда совокупность его случайных величин образуется в условиях, отличных от нормальных под действием определенных причин.

Персонал, осуществляющий управление процессом, в котором формируется контролируемый параметр, должен по его значениям установить: во-первых, в каких условиях они получены (нормальных или отличных от них); и если они получены в условиях, отличных от нормальных, то каковы причины нарушения нормальных условий процесса. Затем принимается управляющее воздействие по устранению этих причин.

Статистический контроль производства и качества продукции имет ряд преимуществ:

1) являются профилактическим;

2) позволяет во многих случаях обоснованно перейти к выборочному контролю и тем самым снизить трудоемкость контрольных операций;

3) создают условия для наглядного изображения динамики изменения качества продукции и настроенности процесса производства, что позволяет своевременно принимать меры к предупреждению брака не только контролерам, но и работникам цеха — рабочим, бригадирам, технологам, наладчикам, мастерам.

Статистический контроль управления качеством продукции предполагает:

1) анализ технологического процесса с целью приведения его к требуемой настроенности, точности и статистически устойчивому состоянию;

2) текущий контроль с целью регулирования и поддержания процесса в состоянии, обеспечивающем заданные качественные параметры;

3) выборочный статистический приемочный контроль качества готовой продукции.

В комплексной системе управления качеством продукции статистические методы контроля относятся к наиболее прогрессивным. Они основаны на применении методов математической статистики к систематическому контролю качества изделий и состояния технологического процесса с целью поддержания его устойчивости и обеспечения заданного уровня качества выпускаемой продукции.

Статистические методы контроля производства и качества продукции и услуг имеют следующие преимущества перед другими методами:

1) носят профилактический характер;

2) позволяют во многих случаях обоснованно перейти к выборочному контролю и тем самым снизить трудоемкость контрольных операций;

3) обеспечивают наглядность изображения динамики изменения качества продукции и настроенности процесса производства, что позволяет своевременно принимать меры к предупреждению брака не только контролерам, но и работникам цеха − рабочим, бригадирам, технологам, наладчикам, мастерам на стадии производства.

Статистические методы управления качеством продукции и услуг предполагают:

1) статистический анализ точности выполнения технологического процесса с целью приведения его к требуемой настроенности, точности и статистически устойчивому состоянию;

2) текущий контроль с целью регулирования и поддержания процесса в состоянии, обеспечивающем заданные качественные параметры;

3) выборочный статистический приемочный контроль качества готовой продукции.

Статистический анализ точности выполнения технологических процессов представляет собой единовременное обследование надежности процесса путем изучения качественных характеристик большого числа изделий, обработанных в определенных условиях на данной операции. Этот вид анализа дает возможность определить фактическую точность процесса и сравнить ее с заданной, оценить качество и устойчивость настроенности процесса, выявить вероятный процент дефектов, определить экономически целесообразные допуски.

Наиболее распространенными методами статистического анализа точности технологических процессов являются:

· сравнение средних значений параметров с номинальными;

· сравнение дисперсий;

· оценка коэффициентов корреляции;

· регрессионный анализ и др.

Метод сравнения средних значений параметров с номинальными используется в тех случаях, когда необходимо установить соответствие изготовляемого изделия эталону и в других случаях при сравнении значений одноименных показателей качества у нескольких групп изделий.

Метод сравнения дисперсий используется в случаях, когда требуется сделатьхарактеристику изменчивости показателей качества, их рассеивание в зависимости от способа обработки или других факторов.

Коэффициент корреляции используется при оценке степени зависимости показателей качества от других показателей.

К регрессионному анализу прибегают в случаях оценки показателя качества по результатам наблюдений за другими показателями.

Статистическое регулирование технологического процесса представляет собой корректировку значений параметров технологического процесса по результатам выборочного контроля параметров выпускаемой продукции с целью обеспечения требуемого уровня качества. В процессе статистического регулирования технологического процесса периодически проверяют небольшое количество (5–10 единиц) изготовляемой продукции на конкретной операции, рассчитывают соответствующий распределению статистический параметр качества и сопоставляют с его номинальным значением. Этот контроль обеспечивает непрерывное наблюдение за стабильностью операции, однородностью качества, что дает возможность своевременно сигнализировать о наступающем отклонении и тем самым предупреждать возникновение дефектов и брака, обеспечивая заданный уровень качества продукции.

Распределение качественного параметра можно представить в виде кривой нормального распределения (рисунок 1), подчиненной закону нормального распределения случайных величин:

где y – плотность вероятностей или частота появления случайной переменной;

х – значение случайной переменной;

– центр распределения (группирование) отклонений, при котором значение у наибольшее;

– среднеквадратическое отклонение случайной переменной х .

X
Y

image008

Рисунок 1– Кривая нормального распределения случайных величин

Приведем наиболее важные статистические характеристики закона нормального распределения:

1) среднее арифметическое значение качественного признака, характеризующее точность процесса,

где п − количество единиц изделий в выборке (число замеров);

х i − замер контролируемого параметра i -го изделия в выборке;

2) среднеквадратическое отклонение случайной величины (значение качественного параметра, характеризующее величину поля фактического рассеивания размеров контролируемого параметра),

image012 ; (3)

3) размах рассеивания качественной характеристики R ,который представляет собой разность между наибольшими и наименьшими фактическими размерами,

Результаты контроля (расчет приведенных характеристик) изображаются графически на карте статистического контроля (рисунок 2). Исходя из полученных параметров осуществляется управление процессом и принимаются решения о качестве продукции, выпущенной за период между двумя выборками.

Количество выборок
Контрольные параметры Зона брака
R 2,75 3,25 2,25 3,25 2,75 2,75 2,25 2,25
С = 4,2 TBR
image015C = 3,864 PBR 4 δ’=4,2
C = 0,479 PHR 1
C = 0 THR

Рисунок 2– Карта статистического контроля качества конденсаторов

Контрольная карта предназначена для статистического контроля по одному показателю качества. В ее верхней части отмечаются точками значения средних арифметических показателей качества х . Здесь нанесены четыре границы: две внешние, ограничивающие поле допуска, − Т в (верхний технический допуск) и Т н (нижний технический допуск), за пределами которых находится зона брака, и две внутренние − Р в (верхний предупредительный допуск) и Р н (нижний предупредительный допуск), между которыми находится номинальный размер контролируемого параметра Р ном.

Внешние границы Т в и Т н определяются исходя из допустимой относительной величины отклонения контролируемого параметра от номинальной величины:

Т в = х ном + ∆х ф; (5)

Т н = х ном − ∆х ф, (6)

где ± х ф − допустимая абсолютная величина отклонения от номинального размера,

где – допустимая величина отклонения от номинальной величины, %.

Внутренние границы и определяются по формулам:

image025 ; image027 , (8)

где – поле допуска на величину изучаемого параметра (по нижнему и

верхнему пределам от номинала);

п – количество единиц изделия в выборке.

Среднеарифметическая величина изучаемого параметра в j -й выборке

где х i – значение контролируемого параметра i -го изучения в j -й выборке.

Положение контрольных линий регулирования размахов Р в R и Р н R определяется по формулам:

Р в R = V 1 d; (10)

Р н R = V 2 d, (11)

где V i и V 2 принимаются по таблицам, составленным на основе корреляционного анализа измеряемого параметра.

Ниже помещаются результаты замеров выборки (5−10 изделий) и среднее арифметическое значение по каждой выборке х. В нижней части карты по каждому номеру выборки откладываются значения размаха варьирования и наносится нижняя сплошная граница (обычно Т н R принимается равной нулю, а Т в R − равной полю допуска), верхняя граница регулирования размахов Р в R (ограничивающая зону допускаемых значений размахов R в выборках), а также сплошная линия T в R (верхний предел допуска).

Технологический процесс протекает удовлетворительно, если средние арифметические значения выборок не выходят за границы регулирования Р в и Р н , а размахи R не выходят за свою границу T в R . В этом случае вся партия, подготовленная между текущей и предыдущей выборками, считается годной и убирается с рабочего места. Если же в выборке обнаружен брак или статистический анализ указывает на возможность его появления при данном состоянии технологического процесса, вся накопившаяся у станка за последний период времени продукция подлежит разбраковке, а станок останавливается для переналадки.

Предупредительные границы Р в и Р н устанавливаются таким образом, чтобы выход тех или иных значений за предел этих границ под влиянием погрешностей, нарушающих нормальный ход процесса, еще не означал появление брака, а лишь предварительно сигнализировал о возможности его возникновения, если эти погрешности не будут немедленно устранены. В подобных случаях контролер, отмечая на карте полученные значения и сопоставляя их с положением границ регулирования, должен предупредить администрацию участка или цеха о возможности появления брака и о необходимости произвести подналадку оборудования.

Из приведенного примера видно, что в период между первой и третьей выборками наблюдалась систематическая расстройка оборудования. В результате на третьей выборке было обнаружено, что величина х превысила допустимое значение Р в . Процесс был остановлен, что отмечено на карточке знаком (↓), и оборудование было перенастроено. Детали, изготовленные между второй и третьей выборками, подверглись сплошному контролю.

После возобновления процесс пошел в пределах установленных границ, однако в восьмой выборке было обнаружено, что размах R превысил допустимое значение Т в R . Оборудование было вновь остановлено (↓). Детали, изготовленные между седьмой и восьмой выборками, подвергались сплошному контролю. После выявления и устранения случайных факторов, ухудшающих качество продукции, процесс был возобновлен и до одиннадцатой выборки включительно протекал в пределах предупредительных границ.

По результатам расчетов (15) – (17) делается вывод: если l ф < l д, то настройка процесса хорошая, если l ф > l д − неудовлетворительная.

Статистический приемочный контроль изделий используется в качестве выборочного метода при приемке больших партий продукции, сырья, материалов, полуфабрикатов. Он основан на применении методов математической статистики для проверки соответствия качества продукции установленным стандартом. По качеству выборки, взятой на контроль, с достаточной достоверностью делают оценку качества всей партии.

Преимущества приемочного статистического контроля состоят в сокращении трудоемкости контроля по сравнению со 100 %-й проверкой продукции, гарантированном обеспечении заданного качества продукции, достоверности оценки заданного уровня качества.

При статистическом приемочном контроле могут быть использованы два метода:

1) контроль по альтернативному признаку, когда за показатель качества принимается доля брака в выборке;

2) контроль по количественному признаку, когда определяются статистические характеристики распределения измеряемого параметра в выборке (среднее значение и дисперсия σ), и по полученным значениям оценивается качество всей партии изделий.

При приемочном контроле по количественному признаку определяются фактические значения измеряемого параметра у всех изделий в выборке, средние арифметические значения этих параметров х и дисперсия d , после чего решаются неравенства (15) – (17).

Если все неравенства оказываются верными, партия принимается. В противном случае партия идет на разбраковку. Преимуществом этого метода является значительно меньший объем выборки при той же достоверности оценки партии (объем выборки сокращается в 3−10 раз), что особенно важно при контроле, который связан с разрушением изделий.

Профессиональные мужские инструменты
Добавить комментарий