Основным расходным материалом во время пайки является припой. Это тот сплав металла, который наплавляется на поверхность основного материала. Но делает это так, чтобы не расплавлять то место, на котором происходит пайка. Это достигается благодаря тому, что температура плавления припоя оказывается более низкой. Данный параметр является одним из основополагающие при определении характеристик, во время выбора марки для наплавки и прочих нюансах использования. Ведь по такому параметру происходит основная классификация, которая выделяет мягкие и твердые припои.
К мягким относятся все те, которые плавятся при значении ниже 300 градусов Цельсия. Как правило, это все те вещи, что используются в домашних условиях, так как с ними можно справиться обыкновенными инструментами. Качество их соединения далеко не всегда хорошо, как у представителей другой группы, но простота применения и улучшенное схватывание зачастую это компенсируют. К твердым относятся те, у которых плавление проходит на отметке выше 300 градусов Цельсия. С такими уже сложнее работать, так как тут нужен не только специальный флюс, но и особые инструменты. Некоторые из таких материалов плавятся при температуре выше 700 градусов, так что обыкновенным паяльником здесь не обойтись и нужна уже более мощная горелка.
Стоит отметить, что имеется несколько значений в данном параметре. Есть начальная температура плавления, при которой материал только начинает переходить в жидкое состояние, а есть уже окончательная, при которой сплав полностью становится жидким. Для пайки берется первый вариант, так как он помогает сохранить вязкость материала, что делает работу более легкой и удобной.
Свойства
Стоит отметить, что от того при какой температуре плавится припой зависят многие его свойства. Это обусловлено составом, ведь если в него входят тугоплавкие металлы, которые в своем чистом виде имеют высокую прочность, то и при добавлении в сплав они сохраняют эти качества, пусть и не в полной мере. Таким образом, прямая зависимость прочности соединения от точки расплавления практически всегда оказывается верной. Простым примером является , который является одним из самых легкоплавких вариантов. На практике он оказывается очень хрупким и может треснуть или слететь от небольших температурных воздействий.
Здесь же наблюдается зависимость с тем, какую температуру будет выдерживать полученное соединение. Температура плавления припоя должна быть меньше, чем у основного металла, иначе это был бы уже процесс сварки. Пайка сама происходит при высокой температуре, соответственно и соединение будет лучше сопротивляться такому воздействию. Теплопроводность припоя также является важным фактором, ведь если она на низком уровне, то это помогает лучше переносить воздействие высоких температур и защищает деталь от перегревания.
Температура плавления припоев
Различия в температуре могут быть очень сильными, что видно на примере таблицы. Причем это касается даже соседних марок в одной серии, так как многое определяется добавками в составе и прочими нюансами. Здесь приведены основные данные к самым распространенным маркам:
Температура плавления мягких припоев хоть и не превышает 300 градусов, тогда как в твердых марках разброс намного больше, то все равно, даже в этом случае получается разница более чем в три раза. Таким образом, стоит подбирать инструменты для температурной обработки, которые бы имели ту мощность, что требуется для достижения нужных параметров. Более высокая или низкая температура может оказаться неподходящей, так что это может стать одной из причин, . Отклонение при выборе температурного режима допускается в небольших пределах, около 10-20 градусов Цельсия, причем желательно в более высокую сторону. Ведь далеко не всегда есть возможность точно выставить рабочие параметры, особенно на простых паяльниках.
Возможность безвредного повышения температуры инструмента обуславливается тем, что у припоя есть первоначальная точка плавления, когда он из твердого перетекает в жидкое. В это время жидкость получается относительно вязкой и достаточно пластичной для применения. Далее следует вторая точка плавления, когда материал уже становится максимально жидким. Здесь уже сложнее работать, так что выбор режима должен быть как раз между этими двумя показателями.
Припой с индием Pb— 37,5 % Sn—25 % In с температурой плавления 134—181 °С также использован для пайки свинца. Припои, богатые индием, такие, как припой 52 % In—48 % Sn с температурой плавления 117 °С, весьма пластичны и сравнительно прочны. Паянные ими соединения работают при температуре —196,15°С и нашли применение для пайки электронных приборов. Малое электросопротивление обнаружено у припоя 45 % Sn—26 % Pb—26 % In с температурой плавления 135—145 °С; в связи с этим он используется при монтаже ЭВМ и счетных машин, а также при пайке печатных плат.
Оловянные и оловянно-свинцовые припои
Олово и его сплавы, содержащие >50 % Sn, имеют температуру ликвидуса в интервале 145—250 °С. Основу таких припоев составляют четыре тройных и три двойных эвтектики, богатые оловом (табл. 8).
Почти все эвтектики этих систем и состоят из фаз на основе твердых растворов элементов, за исключением сплавов системы Sn—Pb—Cd.
Свойства легкоплавких припоев во многом зависят от свойств одной из основных фаз — твердого раствора олова. Олово имеет две полиморфные модификации: 1) белое, с тетрагональной кристаллической структурой, устойчивой до температуры 13,2 °С, с плотностью 7,28 г/см л; 2) серое, с кубической структурой типа алмаза, образующееся при низких температурах, с плотностью 5,82 г/см 3 . Превращение белого олова в серое происходит с выделением теплоты и сопровождается большим изменением объема, что вызывает его разрушение и образование серого порошка («оловянная чума»). Скорость превращения белого олова в серое при температуре 13,2 °С благодаря способности его к переохлаждению мала; она максимальна при — 30-50 °С и уменьшается при дальнейшем снижении температуры.
Белое олово (Р—Sn) обладает хладноломкостью при — 30 -60 °С; вязкое разрушение переходит в хрупкое при ударных испытаниях. В припое ПОС 30, где оловянной фазы меньше, чем в припое ПОС 40, температурный интервал перехода из вязкого в хрупкое состояние расширяется, а ударная вязкость снижается более плавно.
Пластичность олова повышается в интервале температур от 17 °С до — 30 °С, после чего начинает резко снижаться.
Превращение белого олова в серое ускоряется при наличии зародышей серого олова, наряжений в деталях, коррозионно активной среды, некоторых примесей, повторных нагревов и охлаждения. Известны случаи разрушения при низких температурах в холодильных установках полуды и деталей из чистого олова.
Алюминий, цинк, германий, медь, железо, кобальт, марганец и магний ускоряют распад белого олова; висмут, сурьма, свинец, кадмий, серебро, индий, золото и никель задерживают. При наличии в олове 0,3—0,5 % Bi, или 0,5 % Sb, или 1 % Рb распад олова становится практически невозможным.
Опыт показывает, что введение в оловянные припои меди, никеля, магния и цинка повышает их прочность, висмута и цинка — увеличивает их смачивающую способность и легкоплавкость, кроме того, добавки магния, образующего химические соединения с Sn и Рb, упрочняют припои.
В оловянно-свинцовых припоях и в паянных ими соединениях «оловянная чума» даже при работе соединений при низких температурах не наблюдалась.
Легкоплавкие припои, богатые оловом, представлены среди тройных сплавов эвтектической системы Sn—Pb—Cd. Наиболее распространенные припои, содержащие эвтектику Sn—РЬ с температурой плавления 183°С.
Сурьма уменьшает окисление оловянно-свинцовых припоев в жидком состоянии, улучшает их внешний вид и увеличивает теплостойкость до температуры немного выше 100 °С.
Основной набор стандартных оловянно-свинцовых припоев в разных странах примерно одинаков. Они различаются по содержанию примесей и сурьмы, упрочняющей эти припои, содержание которой не превышает 6 %, так как при большем ее количестве образуется химическое соединение SnSb, охрупчивающее припой.
Оловянно-свинцовые припои, содержащие сурьму, непригодны для пайки цинка и его сплавов из-за образования хрупкого химического соединения в шве. Сурьма в больших количествах ухудшает жидкотекучесть Sn—Рb припоев, снижает их коррозионную стойкость, ухудшает сцепляемость с паяемым металлом.
Твердость оловянно-свинцовых припоев при добавлении свинца к олову непрерывно повышается до эвтектического состава, а затем, при дальнейшем его увеличении,— снижается.
Исследования влияния допустимого содержания сурьмы в припоях Sn—Рb на их физико-химические свойства позволили классифицировать эти припои на три группы: 1) бессурьмянистые припои с содержанием до 0,05 % Sb, применяемые при необходимости получения высокой пластичности и вакуумной плотности паяных швов; 2) малосурьмянистые припои, содержащие 0,2— 0,5% Sb, с повышенной пластичностью, обеспечивающие плотные швы и применяемые для оцинкованных и цинковых деталей; 3) сурьмянистые припои, содержащие 2—5 % Sb, широко используемые при абразивной пайке, а также в различных отраслях техники, где требуется повышенная прочность паяных швов.
Оловянно-свинцовые припои обладают двумя важными характеристиками, определяющими механические свойства паяного соединения: температура рекристаллизации их близка к нормальной; растворимость олова в свинце сильно изменяется при повышении температуры. При нормальной температуре в свинце растворяется 2 % Sn, тогда как при эвтектической температуре 183 °С в нем растворяется 19,5 % Sn.
Упрочнить эти припои наклепом не удается. В отличие от чистого олова деформированные оловянно-свинцовые припои имеют меньшую твердость и прочность, чем литые. Подробное исследование этого явления показало, что причиной его служит не только низкая температура рекристаллизации, но и выделение олова из пересыщенного твердого раствора свинца.
После литья оловянно-свинцовые сплавы находятся в неравновесном состоянии. Большая скорость диффузии элемента сплава при нормальной и немного выше температуре приводит к тому, что при исследовании механических средств припоев после старения всегда наблюдается стадия перестаривания (которую практически можно не учитывать). Более заметное перестаривание (разупрочнение) наблюдается при нагреве оловянно-свинцовых припоев в интервале температур 100—150 °С. Разупрочнение припоев происходит вследствие распада твердого раствора свинца и коагуляции олова (табл. 9).
Припой на основе Pb—Sn, а также паянные ими соединения под нагрузкой изменяют свои размеры («ползут») даже при нормальной температуре. Ползучесть этих припоев и паянных ими соединений зависит от условий кристаллизации припоев, их состава, а также от состава основного металла. Крупнозернистые припои (как и другие сплавы) обладают большей сопротивляемостью ползучести, чем мелкозернистые.
К недостаткам припоя ПОС 40 относится сравнительно широкий температурный интервал кристаллизации, что снижает производительность процесса пайки из-за большой длительности затвердевания шва.
Припой ПОСВ 50 применяют для пайки узлов, подвергаемых термоударам.
Для повышения смачивания меди и ее сплавов припоями ПОС 61 и ПОС 40, торможения роста прослойки фазы (Cu 6 Sn 5) и увеличения прочности паянных соединений в них был введен высокоактивный по отношению к олову и свинцу элемент магний.
Магний имеет более высокое химическое сродство с медью, чем с оловом и свинцом, и при содержании (0,15—0,9%)Mg по границе шва с паяемым металлом образуются весьма тонкие прослойки химического соединения Mg 2 Cu, тормозящие рост прослойки C 6 Sn 5 n-фаза), а в шве образуются включения Mg 2 Sn 4 и Mg 2 Pb, упрочняющие шов и измельчающие его структуру. Прочность паяных соединений, выполненных припоями ПОС 61 и ПОС 40, легированных магнием, на 14—20 % выше, чем выполненных стандартными припоями ПОС 61 и ПОС 40 после пайки и после старения.
Установлено, что при введении в припои системы Sn—Рb с содержанием 40, 63 и 90 % Sn никеля в виде порошка с чистотой 99,94 при температуре 1550 °С в количестве 1, 3, 5, 10 и 15 % (при нагреве в кварцевых ампулах) сопротивление срезу соединений, паянных припоем Рb —63 % Sn —10 % Ni, возрастает в 1,5 раза по сравнению с соединениями, паянными припоями, не содержащими никеля, и составляет 45 МПа. Заметное увеличение прочности в паяных соединениях наблюдается при введении в тот же оловянно-свинцовый припой более 5 % Ni. Введение никеля позволяет осуществлять пайку при увеличенных зазорах (шириной более 0,3 мм).
Качество изделий из труднопаяемых металлов, изготовленных способом ультразвуковой пайки с применением припоев системы Sn—Рb, повышается при легировании их металлами группы лантанидов, Zn, Sb, Al, Si, Ti, Be. Такое легирование обеспечивает хорошую смачиваемость окисленной поверхности: цинк улучшает прочность сцепления припоя с паяемым металлом; сурьма повышает коррозионную стойкость паяных соединений в воде и атмосферных условиях: алюминий предотвращает образование шлака на поверхности жидкого припоя в процессе пайки; кремний, титан, бериллий предотвращают потускнение паяных швов. Легирующие элементы в припое должны иметь следующее содержание: лантаниды 0,1 —15 %; цинк до 0,3 %; сурьма 0—0,3 %; алюминий до 0,1 %; кремний, титан или бериллий до 0,5 %; медь до 3 %.
Припои должны быть выплавлены в вакууме, нейтральной или восстановительной газовой среде. Температура их плавления 220—320 °С.
Администрация Общая оценка статьи: Опубликовано: 2012.02.03
Припой состоит большей частью из олова с добавлением различных материалов. В структуру припоя могут входить следующие компоненты:
Олово (Sn) – представляет собой мягкий металл с температурой плавления + 231,9 С градусов. Олово растворяется в соляной и серной кислоте. Большая часть органических кислот на него не действуют. При воздействии комнатных температур олово не подвергается окислению, однако при ее снижении ниже +18 С и особенно ниже -50 С происходит разрушение кристаллической решетки металла, в результате чего олово приобретает серый оттенок.
Свинец (Pb) – очень популярный металл в изготовлении припоя за счет легкоплавкости. В чистом виде металл очень мягкий, легко обрабатываемый. У свинца окисляется только верхняя часть, контактируемая с воздухом. Металл легко растворяется в щелочи и кислотах, содержащих азот и органику.
Кадмий (Cd) – применяется для изготовления легкоплавких припоев в малых дозах совместно с оловом, висмутом или свинцом. В чистом виде – токсичен, температура его плавления + 321 С. Зачастую кадмий применяется в антикоррозийных целях.
Висмут (Bi) – один из самых легкоплавких металлов при использовании его в составе припоя с температурой плавления + 271 С. Висмут хорошо растворим в азотной кислоте, а так же в подогретом растворе серной кислоты.
Сурьма (Sb) – тугоплавкий металл с температурой плавления + 630,5 С. Не подвержен воздействию воздуха. Не окисляется. В припое дает эффект глянца. Металл токсичен.
Цинк (Zn) – хрупкий металл синевато-серого цвета с температурой плавления + 419 С. Быстро окисляется на воздухе. Используется в припоях аппаратуры, работающей во влажных условиях, за счет того, что покрывает под воздействием влаги пленкой окиси, защищающей места пайки. Цинк легко растворим в кислотах. Цинк вместе с медью применяется для твердых припоев, а так же кислотных флюсов.
Медь (Cu) – металл с самой высокой температурой плавления в изготовлении припоя + 1083 С. Не поддается воздействию воздуха, однако верхним слоем окисляется при попадании влаги. Медь применяется в тугоплавких припоях.
Припои разделяют на легкоплавкие и тугоплавкие .
Легкоплавкие припои нашли широкое применение при конструировании радиоаппаратуры и пайке радиоэлектронных компонентов, а так же при лужении дорожек радиомонтажных плат. Температура плавления легкоплавких припоев не выше + 450 С. В основу таких припоев обычно входит олово, свинец, кадмий, висмут или цинк. В радиоэлектронике большое применение получили припои с температурой плавления до + 145 С градусов. В процессе лужения обезжиренных и очищенных плат применяется сплав Розе или сплав Вуда. Температура плавления этих сплавов 70 – 95 градусов, поэтому они равномерно залуживают плату, опущенную в кипящую воду. В отечественной промышленности список легкоплавких материалов большей частью составляют припои оловянно-свинцовые или ПОС. В случае добавления в припой кадмия или висмута к окончанию добавляются буквы К или В. Цифра в окончании маркировки соответствует процентному содержанию олова в припое по отношению к свинцу (большей частью) и сурьме (в мелких количествах). Чем меньше цифра, тем припой более тугоплавкий но и более прочный. Буква Ф означает, что в состав припоя включен флюс. В последнее время из-за европейских экологических стандартов в фирменной аппаратуре применяется в основном бессвинцовый припой с относительно высокой для радиокомпонентов температурой плавления + 220 градусов. Ниже приведен список распространенных отечественных припоев:
ПОС-18 – состоит из олова (17 – 18%), сурьмы (2 – 2,5%) и свинца (79 – 81%). Применяется при низких требованиях прочности пайки, в основном для лужения металлов. Температура плавления +183 +270 градусов (начало плавления / растекаемость).
ПОС-30 – состоит из олова (29 – 30 %), сурьмы (1,5 – 2%), свинца (68 – 70%). Лужения и пайка меди, стали и их сплавов. Температура плавления +183 +250 градусов.
ПОС-50 – олово 49 – 50%, сурьма 0,8%, свинец 49 – 50%. Применяется для качественного спаивания различных металлов, в том числе и в радиоэлектронике. Плавление +183 +230 градуса.
ПОС-90 – олово 89 – 90%, сурьма 0,15%, свинец 10 – 11%. Высокопрочный припой с температурой плавки +18 + 222 градуса, применяемый в лужении деталей с последующим золочением и серебрением. Не применяется в установках с повышенной рабочей температурой.
Припои ПОС-40 и ПОС-60 в радиоэлектронике наиболее популярны. Для спаивания латуни или пластин для экранирования стоит применять ПОС-30. При поверхностном лужении дорожек на платах лучше всего использовать припои с содержанием кадмия или висмута ПОСК-50 или ПОСВ-33. Припои с флюсами и без их содержания для монтажа радиодеталей выпускаются в виде проволоки с толщиной 1 мм для пайки SMD элементов до 3 мм. для радиокомпонентов в обыкновенном корпусе. Для пайки металлов из стали или пайки крупных площадей, припои идут без флюса в трубках диаметром 5 мм. В импортной промышленности так же выпускают свинцово-оловянные шарики диаметром от 0,2 до 0,8 мм., предназначенные для пайки BGA чипов.
Тугоплавкие припои большей частью используются в промышленной пайке твердых металлов. Их температура плавления от + 450 до + 800 С. В состав таких припоев входят медь, серебро, никель или магний. Отличительной особенностью этих припоев является их прочность. Из-за высокой температуры плавления тугоплавкие припои в бытовых условиях для радиомонтажных работ не используются. Большей частью они используются для спаивания латуни, стали, меди, бронзы, чугуна и других металлов с высокой температурой плавления. Припои марки ПМЦ (припой медно-цинковый) применяется для спаивания латуни с содержанием меди (ПМЦ-42), бронзы и меди (ПМЦ-52). Данный припой выпускается в виде слитков определенных форм.
ПМЦ-42 – состоит из меди (40 – 45%), цинка (52 – 57%). Также в его состав входят сурьма, свинец, олово и железо. Его температура плавления + 830 градусов.
ПМЦ-53 – медь 49 – 53%, цинк 44 – 49%. Температура плавления +870 градусов.
В производстве припоев особое место занимают, пожалуй, самые дорогие тугоплавкие припои, основу которых составляет медь с добавлением серебра. Маркируются они как ПСР. Припои с серебром обладают высокой прочностью. Место пайки гибко и легко обрабатываемо. Температура таких припоев от +720 до +830 градусов. Высокотемпературные припои ПСР-10 и 12 используют для спаивания сплавов латуни и меди, ПСР-25 и 45 необходимы для работы с медью, бронзой и латунью. ПСР-70 – припой с максимальным содержанием серебра применяют в пайке высокочастотных элементов: волноводов, защитных контуров и т.д.
Существуют припои, применяемые для пайки алюминия на основе олова, цинка и кадмия. Главная проблема пайки алюминия заключается в его быстром окислении на воздухе, поэтому алюминий паяют в масле с использованием ультразвуковых паяльников.
Флюсы
От правильно выбранного флюса довольно сильно зависит качество пайки, ровность шва и его аккуратность. Флюс при нагреве должен образовывать тонкую растекающуюся пленку на поверхности припоя, которая усиливает сцепление припоя с металлом. Чем меньше температура плавления флюса, тем качество пайки лучше. Так же температура его плавления должна быть ниже температурных режимов плавки припоя. Промышленность сегодня изготовляет флюсы двух типов.
Химически активные флюсы, в состав которых входит, как правило, кислотосодержащие реагенты (ортофосфорная и соляная кислоты, хлористый цинк, хлористый аммоний). Данные флюсы прекрасно справляются с жирными налетами и окислами, однако, недостаточная промывка места пайки со временем приводит к «выеданию» металла и его коррозии, где остался кислотосодержащий флюс. На практике кислотосодержащие флюсы стараются в быту использовать как можно реже, особенно в радиоэлектронике, поскольку они ведут к разрушению текстолита, к тому же, при попадании на кожу человека такие флюсы вызывают ожоги, а их пары при вдыхании человеком особо токсичны. К наиболее популярным активным флюсам относится паяльная кислота, ортофосфорная кислота, хлористый цинк, бура, нашатырь, представляющий собой хлористый аммоний.
Химически пассивные флюсы помогают удалить жировые отложения, а так же в меньшей степени удаляют окислы. Примером может быть канифоль, стеарин, воск. Сами по себе это органические вещества, не вызывающие коррозии, которые служат не только важной сост авляющей при пайке радиокомпонентов, но и выполняют защитную функцию от окисления. Новомодной тенденцией стало использование флюсов ЛТИ, для пайки легкоплавкими припоями. С их помощью можно осуществлять пайку оцинкованных контактов, свинец, очищенное железо, нержавеющую сталь и т.д. В их состав входит спирт, канифоль, малая доза кислоты, триэтаноламин. Для подобной пайки применяют ЛТИ флюс совместно с паяльной пастой. Единственный их минус заключается том, что под действием температуры в месте спайки остаются темные пятна. Пары флюса вредны для человека. Исключение только составляет флюс ЛТИ-120, который не содержит нежелательных компонентов: солянокислотного анилина и метафенилениамина.
Наименования флюсов и их применение
Канифоль сосновая – самый простой, дешевый и доступный вид флюса с низким током утечки. Относится к классу химически пассивных флюсов. На рынке она доступна в свободной продаже из-за популярности. Применяется практически широком спектре радиомотажных работ. Умеренно растворяется в спирте с добавлением глицерина, благодаря чему стали популярны среди радиолюбителей спирто-канифольные флюсы.
Ортофосфорная и паяльная кислота – опасные химически активные флюсы. Применяется при паке сильно окисленных металлов, низколегированных сталей, никеля, а так же их сплавов. После пайки обязательным условием является очистка места спаивания 5% раствором соды, чтобы погасить кислотную активность и выедание металла. Паяльная кислота особо эффективна при температуре 270 – 330 градусов.
Паяльная кислота ПЭТ – оптимальная температура процесса пайки с ее применением 150 – 320 градусов. Применяется при спаивании углеродистых сталей, латуни, меди, никеля.
Паяльный жир – существует в двух видах: активный и нейтральный. Применяется для окисленных деталей, состоящих из черного или цветного металла. Активный паяльный жир в радиоконструировании не применяется. Нейтральный паяльный жир не содержит активных компонентов, поэтомуможет использоваться для пайки радиодеталей.
БУРА – необходима при высокотемпературной пайке высокоулеродитсых металлов: чугуна, меди, стали и т.д.
ТАГС – флюс на глицериновой основе для радиомонтажа. Из-за остаточного сопротивления нуждается в отмывке спиртом.
Флюсы ЗИЛ – хорошо подходят спаивания стали, латуни, меди легкоплавкими припоями на основе висмута.
Ф-38Н ПЭТ – сильно химически активный флюс. Применяется для пайки быстро окисляемых на воздухе металлов при температуре выше 300 градусов. Им паяют нихром, манганин, бронзу. Обязательное применение при его использовании средств индивидуальной защиты. Промывка щелочью так же обязательна
Активные флюсы ФИМ — пайка окисленного серебра, платины. Требует отмывки водном раствором с содержанием соды. В составе флюса фосфорная кислота.
ФКДТ и ФКТ ПЭТ – популярный неактивный флюс широкого применения для лужения проводов и медных контактов в РЭА.
ФТС – бесканифольный пассивный флюс без дыма. Предназначен для пайки радиодеталей.
Паяльная паста «Тиноль» — специальный химический флюс для пайки SMD радиодеталей термофеном паяльной станции.
Флюс-гель ТТ – флюс с индикатором химической активности красноватого оттенка для широкого спектра пайки. При воздействии температурой обесцвечивается, указывая на отсутствие активных компонентов. Не требует отмывки.
СТ-61 – паяльная паста пассивная. А – температура плавления +200 градусов, В – для компьютерных и мобильных радио запчастей, С – канифоль.
Импортные флюсы
IF 8001 Interflux – один из лучших флюсов для бессвинцовой пайки SMD компонентов, в том числе и работы с BGA чипами. Довольно дорогой. Не требует смывания.
IF 8300 BGA Interflux (30cc) – для пайки корпусов BGA. Представляет собой гель. Без вредного галогена.
IF 9007 Interflux BGA – паяльная безотмывочная паста для пайки свинцовым припоем. После работы оставляет едва заметный слой флюса с высоким удельным сопротивлением.
FMKANC32-005 – крем слабоактивированный безотмывочный. Показывает хорошие результаты при пайке BGA чипов и работе с инфракрасными паяльными станциями.
Классификация импортных флюсов
Нередко в маркировке импортных флюсов можно встретить маркировочные символы. Рассмотрим ниже их обозначение.
«R» — канифоль, которая идет либо в чистом виде, либо в виде раствора (спирто-канифоль). Химически пассивный флюс, поэтому перед применением требует ручной зачистки поверхности спаиваемых компонентов от окислов. После окончания работ требует отмывки спиртом или ацетоном.
«RMA» — флюс на основе канифоли с небольшим добавлением активаторов (органических кислот и их соединениями). При термической обработке кислотосодержащие активаторы испаряются. Для их применения необходима вытяжка. Оптимальная пайка достигается с использованием горячего воздуха.
«RA» — активированная канифоль. По заверению производителей из-за низкой активности кислот не оказывает коррозийных процессов на место пайки, поэтому не требует отмывки. Мы бы все таки рекомендовали после работы с ним использовать слабый раствор щелочи или спирт для отмывки, если речь не идет о BGA пайке!
«SRA» — кислотные флюсы активного действия для пайки нержавеющей стали, никеля. В электронике практически не используются из-за разрушающего действия кислот. После пайки таким флюсом изделие нуждается в тщательной отмывке спиртом или ацетоном.
Так же нередко к импортным флюсам к названию добавляют надпись «no clean», которая означает, что данный флюс не требует смывки. Такие флюсы нередко применяют при пайке радиокомпонентов, где очистка после пайки деталей затруднена физически. Например, при пайке BGA микросхем.
Какие существуют паяльники. В каких случаях их применяют [Советы начинающему радиолюбителю, Радиоприемники и их ремонт, Самоучитель игры на паяльнике]
Пая́льник — ручной инструмент, применяемый при луженииипайкедля нагрева деталей,флюса, расплавленияприпояи внесения его в место контакта спаиваемых деталей. Рабочая часть паяльника, обычно называемая жалом, нагревается пламенем (например, отпаяльной лампы) илиэлектрическим током.
Мощность электрического паяльника для монтажа электронных и радиотехнических устройств обычно составляет 30 — 40 Вт. Однако при монтаже полупроводниковой аппаратуры такой паяльник может оказаться чрезмерно мощным, вызовет недопустимый перегрев транзисторов, поэтому целесообразно обзавестись также маломощным паяльником мощностью примерно 15 Вт. Полезно также иметь в комплекте низковольтный маломощный паяльник, питаемый от сети через понижающий разделительный трансформатор с заземленной вторичной обмоткой. Такой паяльник не только уменьшает опасность перегрева полупроводникового прибора или.печатной платы, но и безопасен в смысле попадания на корпус его напряжения сети. Если же окажется необходимым при.монтаже припаять, допустим, провод к металлическому шасси или к другой массивной металлической поверхности, то для ее прогрева мощности в 30 — -40 Вт может оказаться недостаточно. В этих случаях приходится использовать более мощные паяльники (до 60 Вт и более). Таким образом, в наборе полезно иметь несколько паяльников разной мощности, однако на первый случай можно ограничиться одним — мощностью 30 — 40 Вт.
Паяльники с периодическим нагревом
Молотковые и торцевые паяльники представляют собой массивный рабочий наконечник, закрепленный на относительно длинной металлической рукоятке, длина которой обеспечивает безопасность в обращении с инструментом. Для выполнения нестандартных работ паяльники подобного типа снабжаются фасонными наконечниками. Нагрев этих паяльников осуществляется внешними источниками тепла. Это наиболее старый вид паяльников (известны с античности).
Дуговой паяльник — нагрев паяльника осуществляется электрической дугой, периодически возбуждаемой между угольнымэлектродом, помещенным внутри паяльника и наконечником. Дуговой паяльник массой 1 кг нагревается до температуры 500 °C при напряжении 24 В в течение 3 мин, потребляемая мощность 1,5-2,0 кВт.
Паяльники с постоянным нагревом
Электропаяльники имеют встроенный электронагревательный элемент, работающий от электросети, от понижающего трансформатора либо от аккумуляторов.
Газовые — паяльники со встроенной газовой горелкой (горючий газ подаётся из встроенного баллончика со сжиженным газом, или, реже, газ подаётся по шлангу от внешнего источника).
Паяльники, работающие на жидком топливе — схожи с газовыми, но нагрев осуществляется пламенем сгорающего жидкого топлива.
Термовоздушные — в них нагрев деталей, расплавление припоя происходит путем обдува их струёй горячего воздуха. В этом он напоминает промышленный фен, но, в отличие от него, используется тонкая струя воздуха.
Инфракрасные — нагревание осуществляется источником инфракрасного излучения.
Области применения
Электропаяльники малой мощности (5-40 Вт) обычно используются для пайки электронных компонентовпри помощи легкоплавкихоловянно-свинцовыхприпоев; это основной инструмент электромонтажника и электромеханика.
Мощные электропаяльники (100 и более Вт) используются для пайки и лужения массивных деталей.
Термостабилизация жала позволяет использовать паяльники большой (50-100 Вти более) мощности и при пайке электронных компонентов без риска их перегрева — это полезно при работе с многослойными печатными платами, а также при демонтаже многовыводных ИС.
Паяльники для монтажа и ремонта электронных устройств часто изготовляются на низкие рабочие напряжения, от 12 до 36 В. Питают такой паяльник через понижающий трансформатор. Пониженное напряжение значительно снижает вероятность повреждения полупроводниковых электронных компонентов ёмкостными наводками, амплитуда которых на жале обычного паяльника на 220 В достигает десятков, а то и 100-150 вольт, даже при отличной изоляции нагревателя.
Для максимальной защиты от статического электричества и электромагнитных наводок жало паяльника заземляют, уравнивая потенциалы жала, рабочей поверхности, монтируемой конструкции и оператора (для заземления тела человека используется заземляющий браслет).
Следует предостеречь против распространенной ошибки — питания паяльника при работе с электронными устройствами от тиристорного регулятора напряжения — (диммера). Выходное напряжение такого регулятора имеет несинусоидальную форму с крутыми фронтами в моменты открытия тиристора, и следовательно, имеет большой уровень высокочастотных гармоник. Это ведёт к появлению импульсов напряжения большой амплитуды на жале (ёмкостная наводка через ёмкость нагреватель — жало), способных вывести из строя многие полупроводниковые приборы и микросхемы, особенно это относится к приборам с изолированным затвором.
Также возрастает вероятность пробоя изоляции между нагревательным элементом паяльника и жалом, особенно если она слюдяная.
Как пользоваться мультиметром [Как пользоваться мультиметром] Методы поиска неисправностей [Справочное пособие по ремонту электрических и электронных систем]
Многие изделия нуждаются в том, чтобы они соединялись надежно и надолго. Но вот нужной герметичности, к сожалению, не так просто добиться. Именно поэтому стоит применять и специальную процедуру соединения, например, пайки. Но для этого процесса необходимо использовать припои. Так, ими называют сплавы металла или даже сам металл, которые расплавляется и прекрасно заполняют все щели и зазоры, которые только могут быть между деталями.
После того как все будет заполнено, неразборчиво, но очень прочно и, самое главное, герметично, припои затвердевают. Это все происходит из–за того, что они находятся в расплавленном состоянии. Это происходит все потому, что температура металлов тех изделий, которые нужно соединить, намного выше, чем герметичная смесь.
Вы решили купить припой, но не понимаете, что же вам нужно искать на прилавках строительного магазина. Ищите товар, который помечен маркой «пос». Такая аббревиатура означает припой оловянно-свинцовый , только это сокращенное название. Обычно рядышком с «пос» дается еще и цифровое обозначение, которое указывает на то, каково в процентах в данном припое количество олова.
Остальные же проценты, не учтенные в названии «пос», означают остальной состав: свинец и разные добавки. Если же рассматривать пос как сплав металлов, то тогда можно говорить о том, что они могут быть выполнены на основе разного материала:
- Олова.
- Свинца.
- Кадмия.
- Меди.
- Никеля.
Известно, что припой может служить долго во благо человечеству, например, лет до двадцати. Но это возможно лишь только в том случае, если технология его изготовления, в том числе и температурный режим плавления соответствует стандартам. И кроме того, воздействие окружающей среды не является негативным.
Классификация припоев
На сегодняшний день можно говорить о разнообразных типах припоев. Причем в основе их деления может лежать все что угодно , начиная от внешнего вида и заканчивая его элементами в составе.
Итак, пос бывает разным по своему внешнему виду:
- Гранулы.
- Прутики.
- Проволоки.
- Порошки.
- Фольга.
Кроме такого деления, существует еще классификация пос по тому, какую температуру используют при плавлении и каков предел прочности при растяжении.
Все припои делят на три типа:
- Мягкие.
- Твердые.
- Полутвердые.
Итак, первый вид требует температуру до трехсот градусов, а предел прочности ограничивается — 16-100 МПа. Твердые начинают свой процесс плавления при температуре выше трехсот градусов, а границы растяжимости прочности — 100-500 МПа.
К мягким относятся те, которые еще имеют и следующее количество содержания олова: от 10 до 90 процентов. Остальные проценты в этих смесях составляет свинец. По-другому распределяется состав в твердых припоях. Так, они обычно медно-цинковые и серебряные , в которых есть еще и другие добавки.
К полутвердым относятся те, в которых процесс плавления происходит при 4000 градусах. Чаще всего эту группу соединяют с мягкими. Появляются сейчас и новые виды, например, бессвинцовые, которые позволяют говорить о чистоте экологии.
Использование припоев
Остановимся подробнее на том, как происходит сам процесс использования пос. Начинают всего с того, что и место соединения, и сам припой нагревают до определенной температуры. Сам процесс начинается после того, как припой достигнет определенной температуры, ведь известно, что ему необходимы для плавления температурные градусы ниже, чем для металла, из которого изготовлены изделия.
Это позволяет припою плавиться, а металл остаются в своем прежнем состоянии, то есть твердым. При уже небольшой температуре на месте соединения пос и твердого металла, который не поддается плавлению, оставаясь в твердом состоянии, начинаются самые разнообразные процессы физико-химического свойства.
Припой начинает смазывать металл, а потом при той же температуре еще начинает и растекаться, заполняя все зазоры. Доказано, что при таком процессе, который происходит при определенной невысокой температуре, компоненты пос диффундируют в основной металл , а затем уже сам этот основной металл и растворяется в припое.
Таким путем и при установленной температуре образуется промежуточная прослойка. Задача этой прослойки соединить все детали в одно , как только пройдет процесс застывания. Чтобы все прошло успешно, необходимо учитывать физико-химические свойства соединяемых металлов.
Так как припоев много, то стоит правильно выбирать их марки. Например, учитывать температуру, при которой происходит процесс плавления, устойчивость к коррозиям, а также стоимость имеет не последнее значение.
Если необходимо соединить при помощи пос какие–то части, которые проводят ток, то здесь обращают внимание и на удельную проводимость самого припоя. Есть припои, которым необходима очень низкая температура и они отлично подходят для работы с изделиями сложной формы.
Система обозначение припоев
Уже в названии марки можно определить и то, что это такое. Ведь любой сплав должен начинаться с буквы «П», подчеркивая то, что он может подвергаться процессу плавления. Цифра указывается на содержание компонентов.
Когда необходимо надежно скрепить между собой различные твердые соединения, то чаще всего для этого выбирается пайка. Этот процесс широко распространен во многих областях промышленности. Приходится паять и домашним мастерам.
Эта операция выручает не только тогда, когда вышел из строя телевизор или компьютер, и для восстановления необходимо заменить сгоревшую микросхему либо чип. С помощью данного процесса восстанавливают холодильное оборудование, промышленные системы. Пайка помогает в том случае, если необходимо получить герметичное соединение. К тому же некоторые материалы попросту нельзя соединить по-другому. Алюминий, медь, латунь не удастся соединить методом сварки. Для того чтобы получить качественное и надежное, а также герметичное соединение, нужно иметь не только хорошее оборудование и специальные навыки, но и подходящие расходные материалы — припои и
Сплавы припоев и виды флюса выбирают в зависимости от материалов, с которыми придется работать. К примеру, при операции с алюминиевыми изделиями необходим другой флюс, отличный от того, что подходит для меди или серебра. Ниже мы рассмотрим основные характеристики каждого из них и выберем наиболее оптимальный вариант для работы.
Припой для пайки: основные характеристики
В качестве него используют различные Также есть составы на основе чистого металла. Для того чтобы с помощью того или иного припоя можно было создавать качественные соединения, эти материалы должны отличаться некоторыми качествами.
Смачиваемость
Прежде всего, любой вид припоя должен иметь отличную смачиваемость. Без этой характеристики спаиваемые детали просто не смогут надежно контактировать друг с другом. Что такое смачиваемость? Это такое интересное явление, когда прочность связей между частицами твердого вещества и жидкости выше, чем у молекул жидкости. Если есть смачиваемость, тогда жидкость растечется по поверхности и попадет во все полости. Итак, если припой для пайки не смачивает, к примеру, медь, тогда его нельзя использовать с этим металлом. Для пайки ее не используют свинец в чистом виде. Его характеристики смачивания очень низкие и нельзя рассчитывать на высокое качество соединения.
Температура плавления
Какой бы ни был вид припоя, температура, при которой он начнет плавиться, обязательно должна быть ниже плавления спаиваемых материалов. Также она должна быть выше, чем рабочие температуры деталей.
Итак, мы выяснили, какие существуют припои, и какой из них лучше использовать в разных случаях.