Сколько энергии вырабатывает аэс. Устройство атомной станции для «чайников. История и особенности ядерной энергетики

Чтобы понять принцип работы и устройство ядерного реактора, нужно совершить небольшой экскурс в прошлое. Атомный реактор – это многовековая воплощенная, пусть и не до конца, мечта человечества о неисчерпаемом источнике энергии. Его древний «прародитель» — костер из сухих веток, однажды озаривший и согревший своды пещеры, где находили спасение от холода наши далекие предки. Позже люди освоили углеводороды – уголь, сланцы, нефть и природный газ.

Наступила бурная, но недолгая эпоха пара, которую сменила еще более фантастическая эпоха электричества. Города наполнялись светом, а цеха – гулом невиданных доселе машин, приводимых в движение электродвигателями. Тогда казалось, что прогресс достиг своего апогея.

Все изменилось в конце XIX века, когда французский химик Антуан Анри Беккерель совершенно случайно обнаружил, что соли урана обладают радиоактивностью. Спустя 2 года, его соотечественники Пьер Кюри и его супруга Мария Склодовская-Кюри получили из них радий и полоний, причем уровень их радиоактивности в миллионы раз превосходил показатели тория и урана.

Эстафету подхватил Эрнест Резерфорд, детально изучивший природу радиоактивных лучей. Так начинался век атома, явивший на свет свое любимое дитя – атомный реактор.

Первый ядерный реактор

pervyj-reaktor

«Первенец» родом из США. В декабре 1942 года дал первый ток реактор, которому досталось имя его создателя — одного из величайших физиков столетия Э. Ферми. Три года спустя в Канаде обрела жизнь ядерная установка ZEEP. «Бронза» досталась первому советскому реактору Ф-1, запущенному в конце 1946 года. Руководителем отечественного ядерного проекта стал И. В. Курчатов. Сегодня в мире успешно трудятся более 400 ядерных энергоблоков.

Типы ядерных реакторов

Их основное назначение – поддерживать контролируемую ядерную реакцию, производящую электроэнергию. На некоторых реакторах производятся изотопы. Если кратко, то они представляют собой устройства, в недрах которых одни вещества превращаются в другие с выделением большого количества тепловой энергии. Это своеобразная «печь», где вместо традиционных видов топлива «сгорают» изотопы урана – U-235, U-238 и плутоний (Pu).

reaktor-atCe

В отличии, к примеру, от автомобиля, рассчитанного на несколько видов бензина, каждому виду радиоактивного топлива соответствует свой тип реактора. Их два – на медленных (с U-235) и быстрых (c U-238 и Pu) нейтронах. На большинстве АЭС установлены реакторы на медленных нейтронах. Помимо АЭС, установки «трудятся» в исследовательских центрах, на атомных субмаринах и .

Как устроен реактор

У всех реакторов примерна одна схема. Его «сердце» — активная зона. Ее можно условно сравнить с топкой обычной печки. Только вместо дров там находится ядерное топливо в виде тепловыделяющих элементов с замедлителем – ТВЭЛов. Активная зона находится внутри своеобразной капсулы — отражателе нейтронов. ТВЭЛы «омываются» теплоносителем – водой. Поскольку в «сердце» очень высокий уровень радиоактивности, его окружает надежная радиационная защита.

Операторы контролируют работу установки с помощью двух важнейших систем – регулирования цепной реакции и дистанционной системы управления. Если возникает нештатная ситуация, мгновенно срабатывает аварийная защита.

Как работает реактор

rabota-yadernogo-reaktora-I8n4

Атомное «пламя» невидимо, так как процессы происходят на уровне деления ядер. В ходе цепной реакции тяжелые ядра распадаются на более мелкие фрагменты, которые, будучи в возбужденном состоянии, становятся источниками нейтронов и прочих субатомных частиц. Но на этом процесс не заканчивается. Нейтроны продолжают «дробиться», в результате чего высвобождается большая энергия, то есть, происходит то, ради чего и строятся АЭС.

Основная задача персонала – поддержание цепной реакции с помощью управляющих стержней на постоянном, регулируемом уровне. В этом его главное отличие от атомной бомбы, где процесс ядерного распада неуправляем и протекает стремительно, в виде мощнейшего взрыва.

Что произошло на Чернобыльской АЭС

Одна из основных причин катастрофы на Чернобыльской АЭС в апреле 1986 года – грубейшее нарушение эксплуатационных правил безопасности в процессе проведения регламентных работ на 4-м энергоблоке. Тогда из активной зоны было одновременно выведено 203 графитовых стержня вместо 15, разрешенных регламентом. В итоге, начавшаяся неуправляемая цепная реакция завершилась тепловым взрывом и полным разрушением энергоблока.

Реакторы нового поколения

За последнее десятилетие Россия стала одним из лидеров мировой ядерной энергетики. На данный момент госкорпорация «Росатом» ведет строительство АЭС в 12 странах, где возводятся 34 энергоблока. Столь высокий спрос – свидетельство высокого уровня современной российской ядерной техники. На очереди — реакторы нового 4-го поколения.

«Брест»

reaktor-fhCM

Один из них – «Брест», разработка которого ведется в рамках проекта «Прорыв». Ныне действующие системы разомкнутого цикла работают на низкообогащенном уране, после чего остается большое количество отработанного топлива, подлежащего захоронению, что требует огромных затрат. «Брест» — реактор на быстрых нейтронах уникален замкнутым циклом.

В нем отработанное топливо после соответствующей обработки в реакторе на быстрых нейтронах опять становится полноценным топливом, которое можно загружать обратно в ту же установку.

«Брест» отличает высокий уровень безопасности. Он никогда не «рванет» даже при самой серьезной аварии, очень экономичен и экологически безопасен, поскольку повторно пользуется своим «обновленным» ураном. Его также невозможно использовать для наработки оружейного плутония, что открывает широчайшие перспективы по его экспорту.

ВВЭР-1200

reaktor-zZXm

ВВЭР-1200 – инновационный реактор поколения «3+» мощностью 1150 МВт. Благодаря своим уникальным техническим возможностям, он обладает практически абсолютной эксплуатационной безопасностью. Реактор в изобилии оснащен системами пассивной безопасности, которые сработают даже в отсутствии электроснабжения в автоматическом режиме.

Одна из них – система пассивного отведения тепла, которая автоматически активируется при полном обесточивании реактора. На этот случай предусмотрены аварийные гидроемкости. При аномальном падении давления в первом контуре в реактор начинается подача большого количества воды, содержащей бор, которая гасит ядерную реакцию и поглощает нейтроны.

Еще одно ноу-хау находится в нижней части защитной оболочки – «ловушка» расплава. Если все же в результате аварии активная зона «потечет», «ловушка» не позволит разрушиться защитной оболочке и предотвратит попадание радиоактивных продуктов в грунт.


Атомная электростанция и ее устройство:

Атомная электростанция (АЭС) – это ядерная установка, назначением которой является выработка электрической энергии.

– машина для выполнения перегрузок топлива (перегрузочная машина).

Работа этого оборудования контролируется персоналом – операторами, использующими в этих целях блочный щит управления.

Ключевой элемент реактора – зона, располагающаяся в бетонной шахте. В нем также предусмотрена система, обеспечивающая управление и защитные функции; с ее помощью можно выбирать режим, в котором должна проходить управляемая цепная реакция деления. Система обеспечивает и аварийную защиту, что позволяет оперативно прекратить реакцию в случае возникновения внештатной ситуации.

Во втором здании АЭС находится турбинный зал, в котором располагаются турбина и парогенераторы. Кроме того, имеется корпус, в котором перегружается ядерное топливо и хранится отработанное ядерное топливо в специально предусмотренных бассейнах.

На территории атомной станции располагаются конденсаторы , а также градирни, охладительный пруд и брызгальный бассейн, представляющие собой компоненты оборотной системы охлаждения. Градирнями называются башни, выполненные из бетона и по форме напоминающие усеченный конус; в качестве пруда может служить естественный или искусственный водоем. АЭС оборудована высоковольтными линиями электропередач, простирающимися за границы ее территории.

Строительство первой в мире атомной электростанции было начато в 1950 году в России и завершено четыре года спустя. Для осуществления проекта была выбрана территория неподалеку от пос. Обнинского (Калужская область).

Однако впервые вырабатывать электроэнергию начали в Соединенных Штатах Америки в 1951 году; первый успешный случай ее получения был зафиксирован в штате Айдахо.

В сфере производства электроэнергии лидируют США, где ежегодно вырабатывается более 788 млрд кВт/ч. В список лидеров по объемам выработки также входят Франция, Япония, Германия и Россия.


Принцип работы атомной электростанции:

Выработка энергии происходит при помощи реактора , в котором происходит процесс деления ядер. При этом осуществляется распад тяжелого ядра на два осколка, которые, находясь в очень возбужденном состоянии, излучают нейтроны (и др. частицы). Нейтроны, в свою очередь, вызывают новые процессы деления, в результате которых излучается еще большее количество нейтронов. Этот непрерывный процесс распада носит название цепной ядерной реакции, характерной особенностью которой является выделение большого количества энергии. Производство этой энергии и является целью работы атомной электростанции (АЭС).

Производственный процесс включает в себя следующие этапы:

  1. 1. преобразование ядерной энергии в тепловую;
  2. 2. превращение тепловой энергии в механическую;
  3. 3. преобразование механической энергии в электрическую.

На первом этапе в реактор выполняется загрузка ядерного топлива (уран-235) для запуска контролируемой цепной реакции. Топливо высвобождает тепловые или медленные нейтроны, что приводит к выделению значительного количества тепла. Для отведения тепла из активной зоны реактора используется теплоноситель, который пропускается через весь объем активной зоны. Он может иметь жидкую или газообразную форму. Образующаяся тепловая энергия служит в дальнейшем для генерации пара в парогенераторе (теплообменнике).

На втором этапе осуществляется подача пара в турбогенератор. Здесь происходит преобразование тепловой энергии пара в механическую – энергию вращения турбины.

На третьем этапе, с помощью генератора происходит преобразование механической энергии вращения турбины в электрическую, которая далее направляется к потребителям.

Классификация атомных электростанций:

Атомные электростанции классифицируются по типу действующих в них реакторов. Выделяются два основных вида АЭС:

– с реакторами, применяющими в работе тепловые нейтроны (водо-водяной ядерный реактор, кипящий водо-водяной реактор, тяжеловодный ядерный реактор, графито-газовый ядерный реактор, графито-водный ядерный реактор и пр. реакторы на тепловых нейтронах);

– с реакторами, использующими быстрые нейтроны (реакторы на быстрых нейтронах).

В соответствии с видом вырабатываемой энергии различают два вида атомных электростанций :

АЭС для производства электроэнергии;

– АТЭЦ – атомные теплоэлектроцентрали, назначением которых является выработка не только электрической, но и тепловой энергии .

Одно-, двух- и трехконтурные реакторы атомной электростанции:

Реактор атомной станции бывает одно-, двух- или трехконтурным, что имеет отражается на схеме работы теплоносителя – она может иметь, соответственно, один, два или три контура. В нашей стране наиболее распространенными являются станции, оснащенные двухконтурными водо-водяными энергетическими реакторами (ВВЭР). По данным Росстата, на сегодняшний день в России работает 4 АЭС с 1-контурными реакторами, 5 – с 2-контурными и одна – с 3-контурным реактором.

Атомные электростанции с одноконтурным реактором:

Атомные электростанции этого типа – с одноконтурным реактором оснащены реакторами типа РБМК-1000. В блоке размещаются реактор, две конденсационные турбины и два генератора. Высокие рабочие температуры реактора позволяют ему одновременно выполнять функцию парогенератора, благодаря чему и становится возможным использовать одноконтурную схему. Преимуществом последней является сравнительно простой принцип работы, однако ввиду ее особенностей достаточно сложно обеспечить защиту от радиации . Это обусловлено тем, что при применении этой схемы воздействию радиоактивного излучения подвергаются все элементы блока.

Атомные электростанции с двухконтурным реактором:

Двухконтурная схема используется на АЭС с реакторами, относящимися к типу ВВЭР. Принцип работы этих станций следующий: в активную зону реактора под давлением осуществляется подача теплоносителя, в качестве которого выступает вода. Происходит ее нагрев, после чего она поступает в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Радиация излучается только первым контуром, второй не имеет радиоактивных свойств. Устройство блока включает в себя генератор, а также одну или две конденсационных турбины (в первом случае мощность турбины составляет 1000 мегаватт, во втором — 2 х 500 мегаватт).

Передовой разработкой в сфере двухконтурных реакторов выступает модель ВВЭР-1200, предложенная концерном «Росэнергоатом». Она разработана на базе модификаций реактора ВВЭР-1000, которые изготавливались по заказам из-за рубежа в 90-х гг. и в первых годах текущего тысячелетия. В новой модели улучшены все параметры предшественника и предусмотрены дополнительные системы безопасности для снижения риска выхода радиоактивного излучения из герметичного отделения реактора. Новая разработка обладает рядом преимуществ — ее мощность выше на 20% по сравнению с предыдущей моделью, КИУМ достигает 90%, она способна работать в течение полутора лет без перегрузки топлива (обычные сроки составляют 1 год), ее эксплуатационный период равен 60 годам.

Атомные электростанции с трехконтурным реактором:

Трехконтурная схема используется на атомных электростанциях с реакторами типа БН («быстрый натриевый»). Работа таких реакторов основана на быстрых нейтронах, в качестве теплоносителя используется радиоактивный жидкий натрий. Для исключения его контакта с водой в конструкции реактора предусмотрен дополнительный контур, в котором используется натрий без радиоактивных свойств; это обеспечивает трехконтурный тип схемы.

Современный 3-контурный реактор БН-800, разработанный в 80-х – 90-х годах прошлого столетия, обеспечил России передовые позиции в области производства быстрых реакторов. Его ключевой особенностью является защищенность от воздействий, проистекающих изнутри или извне. В этой модели сведен к минимуму риск возникновения аварии, при которой расплавляется активная зона и в ходе переработки облученного ядерного топлива выделяется плутоний.

В рассматриваемом реакторе могут применяться различные виды топлива — обычные с окисью урана или МОКС-топливо на основе урана и

Атомная энергетика — одна из самых развивающихся областей промышленности, что продиктовано постоянным ростом потребляемой электроэнергии. Очень многие страны имеют свои источники выработки энергии при помощи «мирного атом».

Карта атомных электростанции России (РФ)

Россия входит в это число. История АЭС России начинается с далекого 1948 года, когда изобретатель советской атомной бомбы И.В. Курчатов инициировал проектирование первой атомной электростанции на территории тогда еще Советского Союза. Атомные станции России берут свое начало с постройки Обнинской АЭС, которая стала не только первой в России, но первой в мире атомной станцией.

Россия уникальная страна, которая обладает технологией полного цикла атомной энергетики, что подразумевает под собой все этапы, от добычи руды до конечного получения электроэнергии. При этом благодаря своим большим территориям, Россия обладает достаточным запасом урана, как в виде земных недр, так и в виде оружейного оснащения.

На настоящий момент ядерные электростанции в России включают в себя 10 действующих объектов, которые обеспечивают мощность в 27 ГВт (ГигаВатт), что составляет примерно 18% в энергетическом балансе стране. Современное развитие технологии позволяет сделать атомные электростанции России безопасными для окружающей среды объектами, несмотря на то, что использование атомной энергии является наиболее опасным производством с точки зрения промышленной безопасности.

Карта ядерных электростанции (АЭС) России включает в себя не только действующие станции, но также строящиеся, которых насчитывается порядка 10 штук. При этом к строящимся относятся не только полноценные атомные станции, но также перспективные разработки в виде создания плавучей атомной станции, которая отличается мобильностью.

Список атомных электростанций России имеет следующий вид:

Современное состояние атомной энергетики России позволяет говорить о наличии большого потенциала, который в обозримом будущем может реализоваться в создании и проектировании реакторов нового типа, позволяющих вырабатывать большие объемы энергии при меньших затратах.

Одной из самых глобальных проблем человечества является энергетика. Гражданская инфраструктура, промышленность, вооруженные силы — все это требует огромного количества электричества, а для его выработки ежегодно выделяется масса полезных ископаемых. Проблема состоит в том, что эти ресурсы не бесконечны, и уже сейчас, пока ситуация более или менее стабильна, нужно задуматься о будущем. Огромные надежды возлагались на альтернативное, чистое электричество, однако, как показывает практика, конечный результат далек от желаемого. Затраты на солнечные или ветряные электростанции огромны, а количество энергии — минимально. И именно поэтому сейчас атомные электростанции считаются самым перспективным вариантом дальнейшего развития.

История АЭС

Первые идеи касательно использования атома для выработки электроэнергии появились в СССР примерно в 40-х годах XX века, почти за 10 лет до создания собственного оружия массового поражения на этой основе. В 1948 году был разработан принцип работы АЭС и тогда же получилось впервые в мире запитать приборы от атомной энергии. В 1950-м США заканчивает строительство небольшого атомного реактора, который можно считать на тот момент единственной электростанцией на планете такого типа. Правда, он был экспериментальным и мощности выдавал всего 800 Вт. В то же время в СССР закладывается фундамент первой в мире полноценной АЭС, хотя после введения в строй она все же не выдавала электричество в промышленных масштабах. Использовался этот реактор больше для оттачивания технологии.

С этого момента началось массовое строительство атомных электростанций по всему миру. Помимо традиционных лидеров в этой «гонке», США и СССР, первые реакторы появлялись в:

  • 1956 г. — Великобритания.
  • 1959 г. — Франция.
  • 1961 г. — Германия.
  • 1962 г. — Канада.
  • 1964 г. — Швеция.
  • 1966 г. — Япония.

Количество возводимых АЭС постоянно увеличивалось, вплоть до Чернобыльской катастрофы, после чего строительство начало замораживаться и постепенно многие страны стали отказываться от атомной энергии. На данный момент новые такие электростанции появляются в основном в России и Китае. Некоторые страны, ранее планировавшие перейти на энергию другого типа, постепенно возвращаются в программу и в ближайшем будущем возможен очередной скачок строительства АЭС. Это обязательный этап развития человечества, по крайней мере до тех пор, пока не будут найдены другие эффективные варианты производства энергии.

Особенности атомной энергетики

Самый главный плюс заключается в выработке огромного количества энергии с минимальными затратами топлива при практически полностью отсутствующих загрязнениях. Принцип работы атомного реактора АЭС основан на простом паровом двигателе и в качестве основного элемента использует воду (не считая самого топлива), потому с точки зрения экологии вред получается минимальным. Потенциальная опасность электростанций такого типа сильно преувеличена. Причины катастрофы в Чернобыле до сих пор достоверно не установлены (об этом ниже) и более того, вся собранная в рамках расследования информация позволила модернизировать уже имеющиеся станции, исключив даже маловероятные варианты выбросов радиации. Экологи иногда говорят, что такие станции являются мощным источником теплового загрязнения, но это тоже не совсем верно. Действительно, горячая вода из второго контура попадает в водоемы, но чаще всего используются их искусственные варианты, созданные специально для этого, а в остальных случаях доля такого повышения температуры не идет ни в какое сравнение с загрязнениями от других источников энергии.

1954659

Проблема топлива

Не последнюю роль в популярности АЭС играет топливо — уран-235. Его требуется значительно меньше, чем любых других видов с одновременным огромным выбросом энергии. Принцип работы реактора АЭС подразумевает использование этого топлива в виде специальных «таблеток», уложенных в стержни. Фактически, единственная сложность в данном случае заключается в создании именно такой формы. Тем не менее в последнее время начинает появляться информация, что текущих мировых запасов тоже не хватит надолго. Но и это уже предусмотрено. Самые новые трехконтурные реакторы работают на уране-238, которого очень много, и проблема дефицита топлива исчезнет надолго.

Принцип работы двухконтурной АЭС

Как уже было сказано выше, в основе лежит обычный паровой двигатель. Если кратко, принцип работы АЭС заключается в нагреве воды из первого контура, которая в свою очередь нагревает воду второго контура до состояния пара. Он проступает в турбину, вращая лопасти, в результате чего генератор вырабатывает электричество. «Отработанный» пар попадает в конденсатор и вновь превращается в воду. Таким образом получается практически замкнутый цикл. В теории все это могло работать еще проще, при помощи только одного контура, однако это уже действительно небезопасно, так как вода в нем в теории может подвергаться заражению, что исключено при использовании стандартной для большинства АЭС системы с двумя изолированными друг от друга циклами воды.

1954653

Принцип работы трехконтурной АЭС

Это уже более современные электростанции, которые работают на уране-238. Его запасы составляют более 99 % всех радиоактивных элементов в мире (отсюда и следуют огромные перспективы использования). Принцип работы и устройство АЭС такого типа заключается уже в наличии целых трех контуров и активном применении жидкого натрия. В целом, все остается примерно таким же, но с небольшими дополнениями. В первом контуре, нагреваясь непосредственно от реактора, циркулирует этот жидкий натрий при высокой температуре. Второй круг нагревается от первого и также использует ту же самую жидкость, но не настолько разогретую. И только потом, уже в третьем контуре, используется вода, которая нагревается от второго до состояния пара и вращает турбину. Система получается более сложной технологически, но построить такую АЭС нужно только один раз, а потом останется только наслаждаться плодами труда.

1954658

Чернобыль

Принцип работы АЭС «Чернобыль», как считается, стал главной причиной катастрофы. Официально существуют две версии случившегося. По одной проблема возникла из-за неправильных действий операторов реактора. По второй — из-за неудачной конструкции электростанции. Однако принцип работы Чернобыльской АЭС использовался и в других станциях такого типа, которые исправно функционируют и по сей день. Есть мнение, что произошла цепь случайностей, повторить которую практически невозможно. Это и небольшое землетрясение в том районе, проведение эксперимента с реактором, мелкие проблемы самой конструкции и так далее. Все вместе это стало причиной взрыва. Тем не менее до сих пор неизвестна причина, вызвавшая резкое возрастание мощности работы реактора тогда, когда он этого не должен был делать. Было даже мнение о возможной диверсии, но доказать что-либо не удалось и по сей день.

1954655

Фукусима

Это еще один пример глобальной катастрофы с участием атомной электростанции. И в данном случае также причиной стала цепь случайностей. Станция была надежно защищена от землетрясений и цунами, которые не редкость на Японском побережье. Мало кто мог предположить, что оба эти события произойдут одновременно. Принцип работы генератора АЭС «Фукусима» предполагал использование внешних источников энергии для поддержания в работоспособности всего комплекса безопасности. Это разумная мера, так как получить энергию от самой станции в процессе аварии было бы затруднительно. Из-за землетрясения и цунами все эти источники вышли из строя, из-за чего реакторы расплавились и произошла катастрофа. Сейчас проводятся меры по устранению ущерба. По оценкам специалистов, на это уйдет еще около 40 лет.

1954657

Несмотря на всю свою эффективность, атомная энергия все еще остается достаточно дорогой, ведь принципы работы парогенератора АЭС и остальных ее компонентов подразумевает огромные затраты на строительство, которые нужно окупить. Сейчас электричество от угля и нефти пока еще обходится дешевле, но эти ресурсы уже в ближайшие десятилетия закончатся, и в течение следующих нескольких лет атомная энергия будет обходиться дешевле, чем что-либо. На данный момент экологически чистое электричество из альтернативных источников энергии (ветряные и солнечные электростанции) обходится примерно в 20 раз дороже.

Считается, что принцип работы АЭС не дает строить такие станции быстро. Это неправда. На возведение среднестатистического объекта подобного типа уходит примерно 5 лет.

Станции отлично защищены не только от потенциальных выбросов радиации, но и от большинства внешних факторов. К примеру, если бы террористы вместо башен-близнецов выбрали любую АЭС, то они смогли бы нанести только минимальный вред окружающей инфраструктуре, что никак не повлияет на работу реактора.

1954656

Итоги

Принцип работы АЭС практически не отличается от принципов работы большинства других традиционных электростанций. Везде используется энергия пара. В гидроэлектростанциях применяется напор текущей воды, и даже в тех моделях, которые работают от энергии солнца, также используется жидкость, нагреваемая до состояния кипения и вращающая турбины. Единственное исключение из этого правила — ветряные станции, в которых лопасти крутятся за счет движения воздушных масс.

Страница 1 из 3

Атомные электрические станции (АЭС) могут быть конденсационными, теплофикационными (АТЭЦ), а также атомными станциями теплоснабжения (ACT) и атомными станциями промышленного теплоснабжения (ACПT). Атомные станции сооружаются по блочному принципу как в тепловой, так и в электрической части.
Ядерные реакторы АЭС классифицируются по различным признакам. По уровню энергии нейтронов реакторы разделяются на два основных класса: тепловые (на тепловых нейтронах) и быстрые (на быстрых нейтронах). По виду замедлителя нейтронов реакторы бывают водными, тяжеловодными, графитовыми, а по виду теплоносителя — водными, тяжеловодными, газовыми, жидко металлическими. Водоохлаждаемые реакторы классифицируются также по конструктивному исполнению: корпусные и канальные.
С точки зрения организации ремонта оборудования наибольшее значение для АЭС имеет классификация по числу контуров. Число контуров выбирают с учетом требований обеспечения безопасной работы блока при всех возможных аварийных ситуациях. Увеличение числа контуров связано с появлением дополнительных потерь в цикле и соответственно уменьшением КПД АЭС.
В системе любой АЭС различают теплоноситель и рабочее тело. Рабочим телом, т.е. средой, совершающей работу, преобразуя тепловую энергию в механическую, является водяной пар. Назначение теплоносителя на АЭС — отводить теплоту, выделяющуюся в реакторе. Если контуры теплоносителя и рабочего тела не разделены, АЭС называют одноконтурной (рис. 1).

Рис.1. Тепловая схема АЭС:
а — одноконтурная; б — двухконтурная; в — трехконтурная; 1 — реактор; 2 — турбина; 3- турбогенератор; 4- конденсационная установка; 5- конденсатный насос; б — система регенеративного подогрева питательной воды; 7 — питательный насос; 8 — парогенератор; 9 — циркуляционный насос контура реактора; 10 — циркуляционный насос промежуточного контура

В одноконтурных схемах все оборудование работает в радиационно-активных условиях, что осложняет его ремонт. По одноконтурной схеме работают АЭС с реакторами типа РБМК-1000 и РБМК-1500.
Если контуры теплоносителя и рабочего тела разделены, то АЭС называют двухконтурной. Соответственно контур теплоносителя называют первым, а контур рабочего тела — вторым. В таких схемах реактор охлаждается теплоносителем, прокачиваемым через него, и парогенератор — главным циркуляционным насосом. Образованный таким образом контур теплоносителя является радиоактивным, но он включает в себя не все оборудование станции, а лишь его часть. Второй контур включает оборудование, которое работает при отсутствии радиационной активности — это упрощает ремонт оборудования. На двухконтурной станции обязателен парогенератор, который разделяет первый и второй контуры.
По двухконтурной схеме работают АЭС с реакторами типа ВВЭР-440 и ВВЭР-1000. Существуют теплоносители, интенсивно взаимодействующие с паром и водой. Это может создать опасность выброса радиоактивных веществ в обслуживаемые помещения. Таким теплоносителем является, например, жидкий натрий. Поэтому создают дополнительный (промежуточный) контур, для того чтобы даже в аварийных режимах избежать контакта радиоактивного натрия с водой или водяным паром. Такие АЭС называют трехконтурными. По трехкотурной схеме работают АЭС с реакторами типа БН-350 и БН-600.В настоящее время на АЭС в основном установлены энергоблоки мощностью 350 — 1500 МВт с реакторами типа ВВЭР-440, ВВЭР-1000, РБМК-1000, РБМК-1500, БН-350 и БН-600. Основные характеристики реакторов приведены в табл. 1.

Таблица 1. Основные характеристики реакторов АЭС

Параметр

Тип реактора

Водо-водяные

Канальные водо-графи- товые

На быстрых нейтронах

БН-350 БН-600

Тепловая мощность реактора, МВт

Электрическая мощность, МВт

Давление в корпусе реактора, МПа

Давление в барабанах-сепараторах или в парогенераторах, МПа

Расход воды, циркулирующей в реакторе, м3/ч

Кампания реактора, ч

Размер активной зоны, м: диаметр высота

1,5 2,05 1,0 0,75

Топливные кассеты: число кассет число твэлов в кассете

Атомные электростанции, где установлены реакторы: ВВЭР-440 — Ровенская и др.; ВВЭР-1000 — Запорожская, Балаковская, Нововоронежская, Калининская, Южно-Украинская и др.; РБМК-1000 — Ленинградская, Чернобыльская, Курская, Смоленская и др.; РБМК-1500 — Игналинская; БН-350 — Шевченковская; БН-600 — Белоярская.
Водо-водяной энергетический реактор (ВВЭР) — реактор корпусного типа. Замедлитель и теплоноситель — вода под давлением. Рабочее тело на АЭС с реакторами ВВЭР — водяной пар.
Реактор большой мощности кипящий (РБМК) — это канальный реактор, замедлителем в котором служит графит, а теплоносителем — вода и пароводяная смесь.
У реакторов на быстрых нейтронах теплоносителем первого и второго контуров является натрий, тем самым исключается возможность контакта радиоактивного металла с водой. На рис. 2 приведена принципиальная технологическая схема АЭС с ВВЭР. Тепловая энергия из активной зоны реактора 5 в парогенератор 1 переносится водой, циркулирующей под давлением, созданным ГЦН 2. Реактор ВВЭР-1 000 имеет четыре главных циркуляционных контура (на рис. 2 условно показан один контур) и столько же ГЦН.

aes_
Рис. 2. Упрощенная технологическая схема АЭС с водо-водяным энергетическим реактором:
1 — парогенератор; 2 — главный циркуляционный насос (ГЦН); 3 — компенсатор объема; 4 — гидроаккумулятор системы аварийного охлаждения; 5 — реактор; 6 — установка спецводоочистки; 7 — насос нормальней подпитки и борного регулирования; 8 — теплообменник и насос охлаждения бассейна выдержки тепловыделяющих элементов (твэлов); 9 — баки аварийного запаса борного раствора системы САОЗ нормальной и повышенной концентрации; 10 — теплообменник расхолаживания реактора; 11 — спринклерные насосы; 12 — насосы аварийного расхолаживания низкого и высокого давления; 13, 15 — аварийный и рабочий насосы подкачки борного концентрата; 14 — бак борного концентрата; 16 — паровая турбина; 17 — сепаратор-пароперегреватель; 18 — быстродействующие редукционные установки (БРУ) сброса пара; 19 — генератор; 20 — маслоохладитель; 21, 22 — газоохладитель и его насос; 23 — насос технической воды; 24 — циркуляционный насос турбины; 25 — конденсатор; 26, 28 — конденсатные насосы первой и второй ступеней; 27- конденсатоочистка; 29 — подогреватель низкого давления; 30 — питательный турбонасос; 31 — пескорезервный питательный электронасос; 32 — насос расхолаживания; 33 — деаэратор; 34 — подогреватель высокого давления; 35 — бак запаса питательной воды; 36 — аварийный питательный насос; 37 — насосы слива теплоносителя I контура

Для поддержания определенного давления пара над уровнем воды в реакторном контуре установлен паровой компенсатор объема 3 с электронагревом, который обеспечивает испарение воды в компенсаторе объема.
Безопасность АЭС обеспечивают системы нормальной эксплуатации, локализующие системы и система аварийного охлаждения активной зоны реактора (САОЗ). Локализующая система и САОЗ должны обеспечить нераспространение радиоактивности вне герметичных помещений АЭС при всех нормальных и аварийных режимах. Аварийное охлаждение реактора обеспечивается тремя независимыми системами. Одна из таких систем состоит из баков аварийного запаса борного раствора 9, теплообменника расхолаживания 10, спринклерного насоса 11, насосов аварийного расхолаживания низкого и высокого давления 12. В случае разгерметизации реакторного контура и небольшой течи включаются насосы 12, подающие борированный раствор в контур. При максимальной проектной аварии (МПА) — разрыве главного циркуляцонного контура и падении давления в реакторе в объем над активной зоной и под нее подается вода из гидроаккумулирующих емкостей 4. Это должно предотвратить закипание воды в реакторе. Одновременно борированная вода подается в спринклерные установки и в реакторный контур. В струях воды спринклерной установки пар конденсируется и предотвращается повышение давления в герметичной оболочке. Стекающая в приямки вода охлаждается в теплообменниках 10 и вторично закачивается в контур и в спринклерные установки до полного охлаждения реактора.
Подпитка первого контура при нормальном режиме осуществляется насосами 7 из деаэратора первого контура. При малых расходах борсодержащая вода подается насосами 13 и 15.
Для охлаждения воды в бассейне перегрузки и выдержки тепловыделяющих элементов (твэлов) имеется теплообменник и насос 8. Насосы 37 необходимы для обеспечения циркуляции охлаждающей жидкости через теплообменник и спецводоочистку.
При помощи системы управления и защиты реактора (СУЗ) осуществляется пуск и останов реактора, вывод и автоматическое поддержание мощности и выравнивание полей энерговыделения по объему активной зоны. Управление и защита реактора осуществляются перемещением в активной зоне реактора поглотителей нейтронов при помощи органов управления.
Технологическая схема второго нерадиоактивного контура АЭС во многом аналогична схеме КЭС.
Конструктивно реакторное отделение с реактором ВВЭР-1000 состоит из герметичной части — оболочки и негерметичной — обстройки. В герметичной части расположено основное оборудование: реактор, парогенератор, ГЦН, компенсатор объема, главные циркуляционные трубопроводы, емкости САОЗ и др. Для обеспечения необходимой степени безопасности оборудование и коммуникации с радиоактивным теплоносителем высокого давления, который при разуплотнении контура дает выход радиоактивных осколков деления наружу, заключены в герметичную оболочку. Оболочка задерживает радиоактивные продукты аварии внутри помещения без ухудшения сверхдопустимого предела радиационной обстановки снаружи оболочки реактора.
В основу компоновки энергоблоков АЭС с реакторами ВВЭР-1000 положен принцип модульной компоновки, т.е. в каждом энергоблоке предусмотрены все системы, обеспечивающие радиационную и ядерную безопасность энергоблока, а также аварийный останов, расхолаживание, отвод остаточных тепловыделений и комплекс послеаварийных мероприятий, независимо от режима работы остальных энергоблоков. Общестанционные системы, необходимые для обеспечения работы энергоблоков в режимах нормальной эксплуатации, выделены в отдельные сооружения АЭС.
Герметичная часть имеет цилиндрическую форму и состоит из двух объемов — верхнего и нижнего, которые соединены по воздуху. Верхняя часть перекрыта сферическим куполом. В верхней части оболочки установлено оборудование реакторной установки, системы очистки теплоносителя первого контура, транспортно-технологическое оборудование и вентиляционные системы.
Нижняя цилиндрическая часть оболочки соосна с верхним цилиндром и опирается на фундаментную плиту реакторного отделения. В этой части смонтированы вентиляционные камеры трубопроводов системы аварийного расхолаживания реактора, системы охлаждения шахты реактора и др.
Негерметичная часть реакторного отделения в плане имеет форму квадрата, который охватывает окружность оболочки. В помещениях смонтированы блочные технологические системы, которые по выполняемому функциональному назначению технологических процессов должны располагаться в зоне строгого режима. Реакторное отделение является зоной строгого режима. В помещениях реакторного отделения возможно воздействие на персонал внешнего 0-„ и-, 7-излучений, загрязнение воздушной среды радиоактивными газами и аэрозолями, загрязнение поверхности строительных конструкций и оборудования радионуклидами или радиоактивными веществами.
На АЭС с реакторами ВВЭР-1000 к помещениям зоны свободного режима относятся: машинный зал, где установлена турбина К-1030- 60/1500 или К-1000-60/1500 и турбогенератор ТВВ-1000-4УЗ, приточный 42 вентиляционный центр, блочные щиты управления и другое оборудование, т.е. помещения, в которых персонал не занят непосредственно на работах с источниками ионизирующих излучений. В зоне свободного режима практически исключается воздействие на персонал ионизирующего излучения.
При оценке уровня радиации в помещениях АЭС основным фактором радиационного воздействия является поток ионизирующих излучений, проникающих за биологическую защиту, в основном поток 7-излучения. Во всех зонах АЭС системы вентиляции обеспечивают допустимые концентрации радиоактивных веществ во вдыхаемом воздухе.

Профессиональные мужские инструменты
Добавить комментарий