Реферат: Конические сечения

  • 2.2. Определение натуральной величины и углов наклона отрезка прямой к плоскостям проекций.
  • 2.4. Следы прямой линии
  • 2.5. Взаимное положение двух прямых в пространстве
  • 3. Плоскость. Задание плоскости на комплексном чертеже.
  • 3.1 Плоскости общего и частного положений в пространстве.
  • 3.2. Прямые и точки на плоскости. Главные линии на плоскости.
  • 3.3. Линии наибольшего наклона плоскости к плоскостям проекций
  • 4. Взаимное положение прямых и плоскостей.
  • 4.1 Взаимная параллельность прямой и плоскости.
  • 4.2 Взаимная параллельность двух плоскостей
  • 4.3 Взаимное пересечение прямой и плоскости.
  • 4.4 Взаимное пересечение двух плоскостей
  • 4.5 Взаимное пересечение плоскостей, заданных следами.
  • 5. Изображение многогранников
  • 5.1 Виды многогранников
  • 5.2 Пересечение прямой линии с поверхностью многогранника
  • 5.3 Пересечение многогранника плоскостью общего положения
  • 6. Способы преобразования комплексного чертежа
  • 6.1. Способ введения новых плоскостей проекций
  • 6.2. Построение изображений фигур по заданному направлению
  • 6.3. Способы вращения вокруг прямых частного положения
  • 6.3.1. Способ вращения вокруг проецирующих прямых
  • 6.3.2. Способ вращения вокруг линии уровня
  • 6.4. Cпособ плоскопараллельного перемещения
  • 7. Взаимная перпендикулярность прямых и плоскостей
  • 7.1. Взаимная перпендикулярность прямой и плоскости
  • Признак перпендикулярности прямой и плоскости на чертеже.
  • 7.2. Взаимная перпендикулярность двух прямых общего положения в пространстве
  • 7.3. Взаимная перпендикулярность двух плоскостей общего положения в пространстве
  • 8. Метрические задачи и способы их решения
  • 8.1. Решение метрических задач в общем виде
  • 8.2. Решение метрических задач способами преобразования комплексного чертежа
  • 8.3. Измерение расстояний
  • 8.4. Измерение углов
  • 9. Кривые линии и кривые поверхности
  • 9.1. Кривые линии
  • 9.2. Плоские кривые линии
  • 9.3. Пространственные кривые
  • 9.4. Проецирование кривых линий
  • 9.5. Особые точки кривой линии
  • 10. Поверхности
  • 10.1. Способы образования и задания кривых поверхностей
  • 10.2 Классификация поверхностей
  • 10.3. Линейчатые поверхности
  • 10.4. Поверхности вращения
  • 10.5. Поверхности, задаваемые каркасом
  • 10.6. Поверхности второго порядка
  • 10.7. Некоторые свойства поверхностей второго порядка
  • 10.8. Сечение поверхности проецирующей плоскостью и прямой линией
  • 10.9 Конические сечения
  • 10.10 Пересечение прямой с кривой поверхностью
  • 10.11. Взаимное пересечение кривых поверхностей
  • 1. Возможности применения способа вспомогательных секущих плоскостей в качестве “посредников”.
  • 2. Возможности применения вспомогательных секущих сфер в качестве “посредников”.
  • 10.12. Взаимное пересечение поверхностей второго порядка
  • 10.13. Развертки кривых поверхностей
  • 11. Аксонометрические проекции
  • 11.1. Теоремы ортогональной аксонометрии
  • 11.2. Стандартные аксонометрические проекции
  • Прямоугольная диметрическая проекция
  • 11.3. Изображение окружности в координатной плоскости изометрической проекции
  • 11.4. Изображение окружностей в координатных плоскостях диметрической проекции
  • 11.5. Построение аксонометрических изображений простейших геометрических тел и задание точек на их поверхностях
  • 12. Плоскости и прямые, касательные к кривым поверхностям
  • 12.1. Проведение касательных к плоским кривым линиям.
  • 12.2. Плоскости и прямые, касательные к кривой поверхности в данной точке
  • 12.3. Примеры построения плоскостей, касательных к некоторым кривым поверхностям
  • 12.4. Примеры построения прямых, касательных к кривым поверхностям в данной точке
  • 12.5. Взаимное касание кривых поверхностей
  • 12.6. Построение геометрических мест и их применение к решению задач
  • 10.9 Конические сечения

    К коническим сечениям относятся кривые линии и частные случаи таких линий, получающиеся при пересечении конуса второго порядка плоскостью. К этим линиям относятся: эллипс (в частном случае окружность), гипербола (в частном случае две пересекающиеся прямые) и парабола (в частном случае две совпавшие прямые линии) (рис.10.24, 10.25, 10.26).

    Эллипс (плоскость  пересекает все образующие конуса).

    Парабола (плоскость  параллельна только одной образующей конуса).

    Гипербола (плоскость  параллельна двум образующим конуса SL 1 и SL 2).

    Рис.10.24 Рис.10.25

    10.10 Пересечение прямой с кривой поверхностью

    При построении точек пересечения прямой линии с кривой поверхностью вспомогательную секущую плоскость стараются выбрать таким образом, чтобы она пересекла кривую поверхность по линии, легко определяемой на чертеже, то есть по инструментально простой линии: прямой или окружности.Алгоритм решения:

    1. Заданную прямую заключают во вспомогательную секущую плоскость (чаще проецирующую);

    2. Строят сечение заданной поверхности этой плоскостью;

    3. Находят общие точки фигуры сечения с заданной прямой;

    4. Определяют видимость прямой линии относительно поверхности. В этом случае можно воспользоваться конкурирующими точками.

    Пример 1 (рис.10.27). Найти точки пересечения прямой l с поверхностью конуса.

    На рис.10.27 вспомогательная секущая плоскость проведена через прямую l и вершину S конуса. Она пересекла конус по образующим SL 1 и SL 2 . Вспомогательная секущая плоскость задана прямыми S1 и S2, а ее горизонтальный след — линия АВ.

    Задачи на взаимное пересечение прямой линии с кривой поверхностью — задачи третьего типа могут быть сведены к задачам второго типа путем преобразования комплексного чертежа.

    Пример 2. (Рис. 10.28) Найти точки пересечения прямой l с поверхностью сферы. Прямая l занимает общее положение.

    Решение легко находится после преобразования чертежа, после которого прямая l преобразуется в прямую уровня (фронталь).

    Пример 3. (рис.10.29). Найти точки M и N пересечения прямой l с цилиндрической поверхностью вращения.Решение:

    Преобразуем заменой плоскостей проекций чертеж так, чтобы цилиндрическая поверхность стала проецирующей. Одновременно с этим прямая l (1,2) преобразуется в линию l IV (1 IV ,2 IV), точки пересечения которой с очерком цилиндрической поверхности — M IV и N IV и будут искомыми. Обратным преобразованием найдем эти точки на исходных проекциях. Построения ясны из чертежа.

    10.11. Взаимное пересечение кривых поверхностей

    Для построения линий взаимного пересечения двух кривых поверхностей пользуются методом вспомогательных секущих поверхностей. В качестве, которых используются не только вспомогательные секущие плоскости, но и вспомогательные секущие поверхности: цилиндрические, конические и сферы, выбор которых в качестве “посредников” позволяет находить точки искомой линии пересечения.

    1. Возможности применения способа вспомогательных секущих плоскостей в качестве “посредников”.

    Вспомогательные секущие плоскости применимы, если заданы:

    Две поверхности вращения, оси которых перпендикулярны к одной из плоскостей проекций;

    Два цилиндра или два конуса, или конус и цилиндр;

    Две линейчатые поверхности с общей плоскостью параллелизма;

    Две каркасные поверхности.

    Пример 1 (рис.10.30). Построить линию пересечения сферы с конусом.

    Решение: 1. Находим характерные и опорные точки искомой линии пересечения. Такими точками будут точки пересечения очерковых образующих: А, В, С и С 1 . Точки С и С 1 получены с помощью вспомогательной секущей плоскости, проходящей через экватор сферы. 2. Промежуточные точки искомой линии находим с помощью семейства вспомогательных секущих плоскостей: 1 , 2 ,… 3. Соединяя последовательно найденные точки А, М, С, N,..В получаем проекции искомой линии. 4. Определяем видимость.

    Пример 2 (рис.10.31). Построить линию взаимного пересечения поверхностей цилиндра и тора.

    Решение:

    Обе заданные поверхности имеют общую плоскость симметрии, параллельную фронтальной плоскости проекций и потому точки искомой линии пересечения можно найти с помощью вспомогательных секущих плоскостей: ,  1 ,  2 ,…

    Построение начинаем с опорных точек А и В искомой линии, принадлежащих очерковым образующим.

    Наталья Карпушина.

    Как выглядел простейший циркуль? Что такое коники Аполлония? По какой траектории летит пушечное ядро? На что похож параболический циркуль Леонардо да Винчи? Почему живописцы прошлого были неравнодушны к эллипсу?

    У планетария им. Тихо Браге в Копенгагене крыша эллиптической формы образована сечением здания, построенного в форме кругового цилиндра.

    Конические сечения: окружность (1), эллипс (2), парабола (3), гипербола (4).

    Муза Урания — покровительница астрономии. Римская копия греческой скульптуры. III век до н. э. В её правой руке — циркуль.

    Сотворение мира. Миниатюра. XIII век. На ней изображён Бог-творец с циркулем в руках.

    Измерение угла наклона ствола пушки при помощи оружейного квадранта. Старинная гравюра.

    Титульный лист книги Никколо Тартальи «Новая наука» — первого сочинения по баллистике. 1537 год.

    Пушки с разрывными ядрами. Рисунок Леонардо да Винчи. 1490 год. На нём видны и траектории снарядов (семейство кривых, близких к параболе), и угол наклона ствола пушки.

    Параболический циркуль. Рисунок Леонардо да Винчи. Около 1500 года.

    Построение эллипса при помощи нитки, гвоздиков и карандаша.

    Эллиптический циркуль. При движении ползунов по прорезям точка М описывает эллипс.

    Колизей в Риме имеет в плане форму эллипса. Построен в 72-80 годах н. э.

    Завтрак с ветчиной. Художник Питер Клас. 1647 год.

    Триада Менехма

    Античные геометры изучали самые разные плоские кривые. Особого их внимания удостоились конические сечения: эллипс, парабола и гипербола. Всё это — линии пересечения прямого кругового конуса плоскостями, не проходящими через его вершину и наклонёнными под разными углами к образующей.

    Интерес к коническим сечениям появился у греков в попытках решить знаменитые задачи древности: об удвоении куба, квадратуре круга и трисекции угла. Когда стало ясно, что построением прямых и окружностей дело не ограничится, математики по-пробовали найти решения, определяя точки пересечения кривых. Выбор пал на конические сечения.

    Их открыл в IV веке до н. э. древнегреческий математик Менехм, пересекая разного вида конусы (остроугольный, прямоугольный и тупоугольный) плоскостью, перпендикулярной образующей. В итоге ему удалось свести решение задачи об удвоении куба к нахождению точек пересечения двух парабол. Более столетия конические сечения не имели собственных названий (указывали лишь способ получения кривых, например, эллипс — «сечение остроугольного конуса»). В истории науки они известны также как «триада Менехма».

    Свойства эллипса, параболы и гиперболы изучали многие, в том числе Архимед и Евклид. Однако наи-более важных результатов добился Аполлоний Пергский в III веке до н. э. Он разработал общую теорию конических сечений, которую изложил в труде «Коника» (отсюда другое название кривых — коники), в восьми книгах, где рассмотрел почти 400 теорем. Аполлоний впервые получил все три линии как сечения одного и того же конуса. Он же ввёл их современные названия: парабола, гипербола и эллипс. Они происходят от греческих слов «приближение», «избыток» и «недостаток». Кстати, того же происхождения литературные термины: «эллипсис» (пропуск слова во фразе для усиления выразительности речи); «парабола» (иносказательная история) и «гипербола» (образное преувеличение).

    Долгое время конические сечения не находили применения, пока ими всерьёз не заинтересовались астрономы и физики. Выяснилось, что эти линии встречаются в природе (пример тому — траектории небесных тел) и графически описывают многие физические процессы (здесь лидирует гипербола: вспомним хотя бы закон Ома и закон Бойля-Мариотта), не говоря уже об их применении в механике и оптике. На практике, чаще всего в технике и строительстве, приходится иметь дело с эллипсом и параболой.

    Поперёк конуса

    Эллипс и его частный случай — окружность, параболу и гиперболу легко получить экспериментально. На роль конуса вполне подойдёт, например, вафельный рожок для мороженого. Мысленно проводим одну его образующую и разрезаем рожок под разными углами к ней. Задача — сделать всего четыре попытки и получить на срезах все возможные конические сечения. Ещё проще провести опыт с карманным фонариком: в зависимости от его положения в пространстве конус света даст на стене комнаты пятна разной формы. Граница каждого пятна — одно из конических сечений. Поворачивая фонарик в вертикальной плоскости, вы увидите, как одна кривая сменяет другую: окружность вытягивается в эллипс, затем он превращается в параболу, а она, в свою очередь, в гиперболу.

    Математик решает ту же задачу теоретически, сравнивая два угла: α — между осью конуса и образующей и β — между секущей плоскостью и осью конуса. И вот результат: при α < β в сечении получится эллипс или окружность, при α = β - парабола, а при α > β — ветвь гиперболы. Если считать образующие прямыми, а не отрезками, то есть рассмотреть неограниченную симметричную фигуру из двух конусов с общей вершиной, станет понятно, что эллипс — замкнутая кривая, парабола состоит из одной бесконечной ветви, а гипербола — из двух.

    Древняя рогулька

    Простейшее коническое сечение — окружность — можно начертить, воспользовавшись ниткой и гвоздиком. Достаточно привязать один конец нитки к гвоздику, воткнутому в бумагу, а другой — к карандашу и натянуть. Сделав полный оборот, карандаш очертит окружность. А можно воспользоваться циркулем: меняя его раствор, легко нарисовать целое семейство окружностей.

    По легенде, этот инструмент изобрёл Талос, племянник и ученик Дедала — знаменитого древнегреческого мастера и изобретателя. На самом деле циркуль был известен задолго до греков. Его изображения — не редкость на старинных картинах и фресках, гравюрах и обложках книг. Древнейший из найденных археологами циркулей представляет собой металлическую рогульку (у него фиксированный раствор). С помощью такого циркуля наносили простейший орнамент на изделия из дерева, керамики, кости и т.д. Чтобы хоть как-то разнообразить узор, мастера вполне могли пользоваться набором рогулек. Ещё лучше, если бы под рукой оказался один инструмент, рисующий сразу несколько окружностей разного радиуса.

    Задача. Как могла бы выглядеть простейшая конструкция циркуля для рисования окружностей разного радиуса? Как одним раствором циркуля описать окружности разного радиуса? Попробуйте найти несколько решений.

    Догадка Тартальи

    Ещё Аристотель в IV веке до н. э. интересовался траекторией метательных снарядов. Философ полагал, что она состоит из двух отрезков — наклонного и вертикального — и связывающей их дуги окружности. Представления эти, конечно, далеки от истины.

    В XVI столетии, в эпоху бурного развития военного дела, тем же вопросом применительно к огнестрельному оружию занимался итальянский учёный-самоучка Никколо Тарталья (tartaglia в переводе с итальянского — заика). Он прославился не только как математик и инженер, но и как автор первых научных трудов по баллистике.

    Работая в венецианском арсенале «консультантом по расчётам», Тарталья первый исследовал траекторию ядра и дальность его полёта в зависимости от угла наклона ствола пушки к горизонту. Кстати, он предложил определять этот угол с помощью квадранта, помещённого в ствол орудия. Но способ не прижился: слишком уж уязвимым становился артиллерист-измеритель во время вражеской атаки.

    На основе многочисленных наблюдений Тарталья пришёл к выводу, что траектория снаряда — кривая линия, а наибольшая дальность его полёта соответствует углу наклона пушки к горизонту 45°. Правда, строго обосновать этот результат в то время было невозможно. Это удалось сделать лишь сто лет спустя, когда Галилей открыл законы падения тел. Согласно его теории, выпущенный под углом к горизонту снаряд движется по параболе при условии, что сопротивлением воздуха можно пренебречь. Истинная траектория, конечно, от неё отличается.

    Задача. Используя результат Галилея, покажите, что дальность полёта ядра будет максимальной, если оно вылетит из пушки под углом 45° к горизонту. Как определить расстояние до точки падения снаряда?

    Инструмент да Винчи

    Ответы на вопросы, занимавшие Никколо Тарталью, почти на полвека раньше него дал Леонардо да Винчи. Он изучал различные траектории и виды сложного движения в природе и технике. В записных книжках художника и учёного есть немало набросков, сделанных на основе наблюдений. Полёт птиц, водоворот, распространение света и звука, круги на воде, движение мяча и снаряда… Во всех случаях его особо интересовала геометрия траекторий: углы падения и отражения, кривые и прочие линии, а также зависимость их формы от различных параметров. Неудивительно, что да Винчи предвосхитил результаты Тартальи.

    Леонардо да Винчи часто доводилось делать построения и измерения, для которых требовались специальные инструменты. Вот как описывает мастера за работой Дмитрий Мережковский в романе «Воскресшие боги»: «…Стоя на коленях, рядом с Венерой, вынул он циркуль, угломер, полукруглую медную дугу, наподобие тех, какие употреблялись в математических приборах, и, с выражением того же упорного, спокойного и проникновенного любопытства в холодных, светло-голубых глазах и тонких, плотно сжатых губах, начал мерить различные части прекрасного тела…»

    В рукописях Леонардо да Винчи содержатся упоминания о самых разных чертёжных инструментах. Считается, что некоторые из них сконструировал он сам. Одно из его изобретений — устройство для рисования параболы. (Подобный инструмент, известный ещё грекам, описал арабский математик X-XI веков ас-Сиджизи.) Это был совершенный циркуль — с его помощью чертили все виды конических сечений: окружность, эллипс, параболу и гиперболу.

    Задача. Попробуйте объяснить принцип работы устройства для рисования параболы, придуманного Леонардо да Винчи, уяснив роль каждой детали и установив, какому элементу конуса она соответствует.

    Стеклорез-циркуль

    Самый простой способ построения эллипса, безо всяких инструментов, приведённый в одном арабском трактате IX века, сродни способу рисования окружности. Он основан на определении эллипса как множества всех точек плоскости, для каждой из которых сумма расстояний до двух данных точек постоянна. Нужно прикрепить лист бумаги к картону двумя гвоздиками, привязать к ним нитку, длина которой больше расстояния между ними, и натянуть её карандашом. Если провести карандашом по бумаге, сохраняя нитку натянутой, и вернуться в исходную точку, конец его опишет эллипс. Однако такое построение не всегда надёжно и практично. Например, очертить на земле клумбу эллиптической формы, используя колышки и верёвку, или вырезать в доске отверстие, вбив в дерево пару гвоздиков и нарисовав эллипс, можно. А как быть, если требуется изготовить зеркало такой же формы?

    Придётся воспользоваться специальным стеклорезом на присосках. Механизм его работы основан на действии простого чертёжного инструмента, известного как эллиптический циркуль. Устройство состоит из крестовины с двумя одинаковыми перпендикулярными прорезями. По ним перемещаются ползуны А и В (один — по вертикали, другой — по горизонтали), к которым шарнирами прикреплена линейка, а на её конце в точке М закреплён карандаш (в стеклорезе его заменяет режущий ролик). При движении линейки конец карандаша описывает эллипс.

    Вездесущий эллипс

    Вообще, с эллипсом мы встречаемся постоянно. Взять, к примеру, работу дизайнеров. Одни выбирают эллиптическую форму для цветников, фонтанов и искусственных водоёмов, другие — для предметов интерьера. Столешница, абажур, рама для картины, рисунок ковра, декоративное блюдо, циферблат часов — и тот может иметь очертания эллипса. Но эллипс образуется в сечении не только конуса, но и прямого кругового цилиндра (достаточно пересечь плоскостью его боковую поверхность, не затрагивая при этом оснований). Этот приём взяли на вооружение современные архитекторы. Пример тому — здание планетария в Копенгагене, носящего имя Тихо Браге — знаменитого датского астронома, учителя Иоганна Кеплера. Здание в форме усечённого цилиндра имеет крышу эллиптической формы. Но чаще встречаются сооружения, представляющие эллипс в плане. Самое известное из них — римский Колизей, грандиозный античный амфитеатр, вмещавший до 70 000 зрителей. Его арена, на которой устраивались состязания и зрелища, также ограничена эллипсом.

    Наконец, с этой кривой имеют дело художники всякий раз, когда изображают окружность в перспективе. Рисуя натюрморт — фрукты, тарелки, вазы и прочие предметы круглой формы, — они решают непростую задачу: строят проекции окружностей на плоскость полотна. Живописцы прошлого использовали эллипс и при создании композиции картины. Сначала мастера придумывали общую геометрическую схему, а затем вписывали в неё различные элементы. За счёт этого им удавалось управлять движением взгляда зрителя, акцентируя внимание на важных деталях.

    Даже беглое знакомство с коническими сечениями показывает, насколько богата и интересна их история и многообразно их применение. Недаром в разные времена этими сечениями интересовались не только учёные, инженеры, строители, но и представители разных искусств.

    Три знаменитые задачи древности

    Так в истории геометрии назвали задачи на построение: об удвоении куба (построить куб вдвое большего объёма, чем заданный), трисекции угла (разделить произвольный угол на три равные части) и квадратуре круга (построить квадрат, равновеликий данному кругу). Решения всех трёх задач математики искали со времён античности. В XIX веке было доказано, что ни одну из них нельзя решить при помощи только циркуля и линейки. Вместе с тем известно множество таких построений с применением других инструментов и приспособлений. В них используются различные плоские кривые, в частности конические сечения.

    ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

    ПРОФЕССИОНАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

    ГОРОДА МОСКВЫ

    «КОЛЛЕДЖ ПОЛИЦИИ»

    Реферат по дисциплине Математика

    На тему: «Конические сечения и их применения в технике»

    Выполнила

    Курсант 15 взвода

    Алексеева А.И

    Преподаватель

    Зайцева О.Н.

    Москва

    2016

    Содержание:

    Введение

    1. Понятие конических сечений……………………………………………5

    2. Виды конических сечений………………………………………………….7

    3. Исследование……………………………………………………………..8

    4. Свойства конических сечений…. ……………………………………….9

    5. Построение конических сечений……………………………………….10

    6. Аналитических подход…………………………………………………14

    7. Приминение……………………………………………………………….16

    8. Поперек конуса…………………………………………………………..17

    Список использованной литературы

    Введение

    Конические сечения впервые предложил использовать древнегреческий геометр Менехм, живший в IV веке до нашей эры, при решении задачи об удвоении куба. Эту задачу связывают со следующей легендой.

    Однажды на острове Делосе вспыхнула эпидемия чумы. Жители острова обратились к оракулу, который сказал, что для прекращения эпидемии надо увеличить вдвое золотой жертвенник, который имел форму куба и находился в храме Аполлона в Афинах. Островитяне изготовили новый жертвенник, ребра которого были вдвое больше ребер прежнего. Однако чума не прекратилась. Разгневанные жители услышали от оракула, что неверно поняли его предписание — удвоить было надо не ребра куба, а его объём, то есть увеличить ребра куба в раз.

    Для получения конических сечений Менехм пересекал конус — остроугольный, прямоугольный или тупоугольный — плоскостью, перпендикулярной одной из образующих. Для остроугольного конуса сечение плоскостью, перпендикулярной к его образующей, имеет форму эллипса. Тупоугольный конус при этом дает гиперболу, а прямоугольный – параболу.

    Отсюда произошли и названия кривых, которые были введены Аполлонием Пергским, жившим в III веке до нашей эры: эллипс, что означает изъян, недостаток (угла конуса до прямого); гипербола — преувеличение, перевес (угла конуса над прямым); парабола — приближение, равенство (угла конуса прямому углу). Позже греки заметили, что все три кривые можно получить на одном конусе, изменяя наклон секущей плоскости. При этом следует брать конус, состоящий из двух полостей и мыслить, что они простираются в бесконечность (рис.1)

    Если провести сечение кругового конуса, перпендикулярное его оси, а потом поворачивать секущую плоскость, оставляя одну точку её пересечения с конусом неподвижной, то увидим, как окружность будет сначала вытягиваться, превратившись в эллипс. Затем вторая вершина эллипса уйдет в бесконечность, и вместо эллипса получится парабола, а потом плоскость пресечет и вторую полость конуса и получится гипербола.

    Долгое время конические сечения не находили применения, пока ими всерьёз не заинтересовались астрономы и физики. Выяснилось, что эти линии встречаются в природе (пример тому — траектории небесных тел) и графически описывают многие физические процессы (здесь лидирует гипербола: вспомним хотя бы закон Ома и закон Бойля-Мариотта), не говоря уже об их применении в механике и оптике. На практике, чаще всего в технике и строительстве, приходится иметь дело с эллипсом и параболой.

    Рис.1

    эпюр

    Понятие конических сечений

    Конические сечения — это плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы (Рис. 2).

    Рис.2

    При вращении прямоугольного треугольника около одного из катетов, гипотенуза с ее продолжениями описывает коническую поверхность, называемую поверхностью прямого кругового конуса, которая может быть рассматриваема как непрерывный ряд прямых, проходящих через вершину и называемых образующими, причем все образующие опираются на одну и ту же окружность, называемую производящей. Каждая из образующих представляет собой гипотенузу вращающегося треугольника (в известном его положении), продолженную в обе стороны до бесконечности. Таким образом, каждая образующая простирается по обе стороны от вершины, вследствие чего и поверхность имеет две полости: они сходятся в одну точку в общей вершине. Если такую поверхность пересечь плоскостью, то в сечении получится кривая, которая и называется коническим сечением. Она может быть трех типов:

    1) если плоскость пересекает коническую поверхность по всем образующим, то рассекается только одна полость и в сечении получается замкнутая кривая, называемая эллипсом;

    2) если секущая плоскость пересекает обе полости, то получается кривая, имеющая две ветви и называемая гиперболой;

    3) если секущая плоскость параллельна одной из образующих, то получается парабола.

    Если секущая плоскость параллельна производящей окружности, то получается окружность, которая может быть рассматриваема как частный случай эллипса. Секущая плоскость может пересекать коническую поверхность только в одной вершине, тогда в сечении получается точка, как частный случай эллипса.

    Если плоскостью, проходящей через вершину, пересекаются обе плоскости, то в сечении получается пара пересекающихся прямых, рассматриваемая как частный случай гиперболы.

    Если вершина бесконечно удалена, то коническая поверхность обращается в цилиндрическую, и сечение ее плоскостью, параллельной образующим, дает пару параллельных прямых как частный случай параболы. Конические сечения выражаются уравнениями 2-го порядка, общий вид которых

    Ax 2 + Вху + C + Dx + Ey + F = 0 и называются кривыми 2-го порядка.

    (коническое сечение)

    Виды конических сечений .

    Конические сечения могут быть трёх типов:

    1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая — эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.

    2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая — парабола, целиком лежащая на одной полости.

    3) Секущая плоскость пересекает обе полости конуса; линия пересечения — гипербола — состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.

    (рис.1) парабола (рис.2) эллипс (рис.3) гипербола

    Исследование

    В тех случаях, когда конические сечение имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:

    a 11 x 2 +2xy + a 22 y 2 = a 33 .

    Дальнейшие исследования таких (называемых центральными) конические сечения показывают, что их уравнения могут быть приведены к ещё более простому виду:

    Ах 2 + Ву 2 = С,

    если за направления осей координат выбрать главные направления — направления главных осей (осей симметрии) конических сечений. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение определяет эллипс; если А и В разного знака, то — гиперболу.

    Уравнение параболы привести к виду (Ах 2 + Ву 2 = С) нельзя. При надлежащем выборе осей координат (одна ось координат — единственная ось симметрии параболы, другая — перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:

    y 2 = 2рх.

    СВОЙСТВА КОНИЧЕСКИХ СЕЧЕНИЙ

    Определения Паппа. Установление фокуса параболы навело Паппа на мысль дать альтернативное определение конических сечений в целом. Пусть F — заданная точка (фокус), а L — заданная прямая (директриса), не проходящая через F, и DF и DL — расстояния от подвижной точки P до фокуса F и директрисы L соответственно. Тогда, как показал Папп, конические сечения определяются как геометрические места точек P, для которых отношение DF:DL является неотрицательной постоянной. Это отношение называется эксцентриситетом e конического сечения. При e < 1 коническое сечение - эллипс; при e > 1 — гипербола; при e = 1 — парабола. Если F лежит на L, то геометрические места имеют вид прямых (действительных или мнимых), которые являются вырожденными коническими сечениями. Бросающаяся в глаза симметрия эллипса и гиперболы говорит о том, что у каждой из этих кривых есть по две директрисы и по два фокуса, и это обстоятельство навело Кеплера в 1604 на мысль, что и у параболы существует второй фокус и вторая директриса — бесконечно удаленные точка и прямая. Точно также и окружность можно рассматривать как эллипс, фокусы которого совпадают с центром, а директрисы находятся в бесконечности. Эксцентриситет e в этом случае равен нулю.

    Свойства. Свойства конических сечений поистине неисчерпаемы, и любое из них можно принять за определяющее. Важное место в Математическом собрании Паппа, Геометрии Декарта (1637) и Началах Ньютона (1687) занимает задача о геометрическом месте точек относительно четырех прямых. Если на плоскости заданы четыре прямые L 1 , L 2 , L 3 и L4 (две из которых могут совпадать) и точка P такова, что произведение расстояний от P до L 1 и L 2 пропорционально произведению расстояний от P до L 3 и L 4 , то геометрическое место точек P является коническим сечением.

    ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

    Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

    Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

    Эллипс. Если концы нити заданной длины закреплены в точках F 1 и F 2 (рис. 3), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F 1 и F2 называются фокусами эллипса, а отрезки V 1 V 2 и v 1 v 2 между точками пересечения эллипса с осями координат – большой и малыми осями. Если точки F 1 и F 2 совпадают, то эллипс превращается в окружность (Рис. 3).

    рис.3

    Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F 1 и F 2 , как показано на рисунке 4, а, расстояния подобраны так, что отрезок PF 2 превосходит по длине отрезок PF 1 на фиксированную величину, меньшую расстояния F 1 F 2 . При этом один конец нити проходит под шпеньком F 1 , и оба конца нити проходят поверх шпенька F 2 . (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV 1 Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и, потягивая оба конца нити вниз за точку F 2 , а когда точка P окажется ниже отрезка F 1 F 2 , придерживая нить за оба конца и осторожно отпуская ее. Вторую ветвь гиперболы мы вычерчиваем, предварительно поменяв шпеньки F 1 и F 2 (Рис. 4).

    рис.4

    Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы. Угловые коэффициенты этих прямых равны где – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F 2 F 1 ; отрезок v 1 v 2 называется сопряженной осью гиперболы, а отрезок V 1 V 2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v 1 , v 2 , V 1 , V 2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v 1 и v 2 . Они находятся на одинаковом расстоянии, равном от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov 1 и V 2 O и гипотенузой F 2 O.

    Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.

    Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (вторая пол. III в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (VI в.) (Рис. 5).

    Рис.5

    АНАЛИТИЧЕСКИЙ ПОДХОД

    Алгебраическая классификация. В алгебраических терминах конические сечения можно определить как плоские кривые, координаты которых в декартовой системе координат удовлетворяют уравнению второй степени. Иначе говоря, уравнение всех конических сечений можно записать в общем, виде как где не все коэффициенты A, B и C равны нулю. С помощью параллельного переноса и поворота осей уравнение (1) можно привести к виду

    ax 2 + by 2 + c = 0

    или

    px 2 + q y = 0.

    Первое уравнение получается из уравнения (1) при B2 > AC, второе — при B 2 = AC. Конические сечения, уравнения которых приводятся к первому виду, называются центральными. Конические сечения, заданные уравнениями второго вида с q > 0, называются нецентральными. В рамках этих двух категорий существуют девять различных типов конических сечений в зависимости от знаков коэффициентов.

    1) Если коэффициенты a, b и c имеют один и тот же знак, то не существует вещественных точек, координаты которых удовлетворяли бы уравнению. Такое коническое сечение называется мнимым эллипсом (или мнимой окружностью, если a = b).

    2) Если a и b имеют один знак, а c — противоположный, то коническое сечение — эллипс; при a = b — окружность.

    3) Если a и b имеют разные знаки, то коническое сечение — гипербола.

    4) Если a и b имеют разные знаки и c = 0, то коническое сечение состоит из двух пересекающихся прямых.

    5) Если a и b имеют один знак и c = 0, то существует только одна действительная точка на кривой, удовлетворяющая уравнению, и коническое сечение — две мнимые пересекающиеся прямые. В этом случае также говорят о стянутом в точку эллипсе или, если a = b, стянутой в точку окружности.

    6) Если либо a, либо b равно нулю, а остальные коэффициенты имеют разные знаки, то коническое сечение состоит из двух параллельных прямых.

    7) Если либо a, либо b равно нулю, а остальные коэффициенты имеют один знак, то не существует ни одной действительной точки, удовлетворяющей уравнению. В этом случае говорят, что коническое сечение состоит из двух мнимых параллельных прямых.

    8) Если c = 0, и либо a, либо b также равно нулю, то коническое сечение состоит из двух действительных совпадающих прямых. (Уравнение не определяет никакого конического сечения при a = b = 0, поскольку в этом случае исходное уравнение (1) не второй степени.)

    9) Уравнения второго типа определяют параболы, если p и q отличны от нуля. Если p > 0, а q = 0, мы получаем кривую из п. 8. Если же p = 0, то уравнение не определяет никакого конического сечения, поскольку исходное уравнение (1) не второй степени.

    Приминение

    Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении.

    Все тела Солнечной системы движутся вокруг Солнца по эллипсам. Небесные тела, попадающие в Солнечную систему из других звездных систем, движутся вокруг Солнца по гиперболической орбите и, если на их движение не оказывают существенного влияния планеты Солнечной системы, покидают се по этой же орбите. По эллипсам движутся вокруг Земли ее искусственные спутники и естественный спутник – Луна, а космические корабли, запущенные к другим планетам, движутся по окончании работы двигателей по параболам или гиперболам (в зависимости от скорости) до тех пор, пока притяжение других планет или Солнца не станет сравнимо с земным притяжением (рис. 3).

    Поперёк конуса

    Эллипс и его частный случай — окружность, параболу и гиперболу легко получить экспериментально. На роль конуса вполне подойдёт, например, вафельный рожок для мороженого. Мысленно проводим одну его образующую и разрезаем рожок под разными углами к ней. Задача — сделать всего четыре попытки и получить на срезах все возможные конические сечения. Ещё проще провести опыт с карманным фонариком: в зависимости от его положения в пространстве конус света даст на стене комнаты пятна разной формы. Граница каждого пятна — одно из конических сечений. Поворачивая фонарик в вертикальной плоскости, вы увидите, как одна кривая сменяет другую: окружность вытягивается в эллипс, затем он превращается в параболу, а она, в свою очередь, в гиперболу.

    Математик решает ту же задачу теоретически, сравнивая два угла: α — между осью конуса и образующей и β — между секущей плоскостью и осью конуса. И вот результат: при α < β в сечении получится эллипс или окружность, при α = β - парабола, а при α > β — ветвь гиперболы. Если считать образующие прямыми, а не отрезками, то есть рассмотреть неограниченную симметричную фигуру из двух конусов с общей вершиной, станет понятно, что эллипс — замкнутая кривая, парабола состоит из одной бесконечной ветви, а гипербола — из двух.

    Простейшее коническое сечение — окружность — можно начертить, воспользовавшись ниткой и гвоздиком. Достаточно привязать один конец нитки к гвоздику, воткнутому в бумагу, а другой — к карандашу и натянуть. Сделав полный оборот, карандаш очертит окружность. А можно воспользоваться циркулем: меняя его раствор, легко нарисовать целое семейство окружностей.

    СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ

    1.Верещагин Н.К., А.Шень. Лекции по математической логике и теории алгоритмов. 1999

    2. Прасолов В.В.. Геометрия Лобачевского 2004

    4. Прасолов В.В.. Геометрия Лобачевского 2004

    МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ
    МУРМАНСКОЙ ОБЛАСТИ
    Государственное автономное профессиональное образовательное учреждение Мурманской области
    «МОНЧЕГОРСКИЙ ПОЛИТЕХНИЧЕСКИЙ КОЛЛЕДЖ»
    (ГАПОУ МО «МонПК»)
    ИНДИВИДУАЛЬНЫЙ ПРОЕКТпо дисциплине «Математика»
    КОНИЧЕСКИЕ СЕЧЕНИЯ И ИХ ПРИМЕНЕНИЕ В ТЕХНИКЕ
    Работу выполнил обучающийся
    гр.МТ-15
    Ершов Михаил
    Руководитель: Кулдыркаева И.А.
    преподаватель ГАПОУ МО
    «МонПК»
    Мончегорск, 2016

    СОДЕРЖАНИЕ
    TOC o «1-3» h z u ВВЕДЕНИЕ PAGEREF _Toc453750999 h 31. ИСТОРИЯ ИЗУЧЕНИЯ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751000 h 42. ПОНЯТИЕ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751001 h 63. ВИДЫ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751002 h 84. ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ PAGEREF _Toc453751003 h 105. ПРИМЕНЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ В ТЕХНИКЕ. PAGEREF _Toc453751004 h 13ЗАКЛЮЧЕНИЕ PAGEREF _Toc453751005 h 14СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ PAGEREF _Toc453751006 h 15
    .

    ВВЕДЕНИЕЦель работы: изучить конические сечения.
    Задачи: научиться различать виды конических сечений, строить конические сечения, изучить их применение в технике.
    Конические сечения впервые предложил использовать древнегреческий геометр Менехм, живший в IV веке до нашей эры, при решении задачи об удвоении куба. Эту задачу связывают со следующей легендой.
    Однажды на острове Делосе вспыхнула эпидемия чумы. Жители острова обратились к оракулу, который сказал, что для прекращения эпидемии надо увеличить вдвое золотой жертвенник, который имел форму куба и находился в храме Аполлона в Афинах. Островитяне изготовили новый жертвенник, ребра которого были вдвое больше ребер прежнего. Однако чума не прекратилась. Разгневанные жители услышали от оракула, что неверно поняли его предписание — удвоить было надо не ребра куба, а его объём.
    Античные геометры изучали самые разные плоские кривые. Особого их внимания удостоились конические сечения: эллипс, парабола и гипербола. Всё это — линии пересечения прямого кругового конуса плоскостями, не проходящими через его вершину и наклонёнными под разными углами к образующей.
    1. ИСТОРИЯ ИЗУЧЕНИЯ КОНИЧЕСКИХ СЕЧЕНИЙВ терминах геометрической алгебры, которой пользовались греческие математики, задача означала: по данному отрезку а найти такие отрезки х и y такие, что а: х = х: y = y: 2a. Тогда длина отрезка х будет равна.
    Приведенную пропорцию можно рассматривать как систему уравнений:
    left000
    Но x2=ay и y2=2ax — это уравнения парабол. Поэтому для решения задачи следует отыскать точки их пересечения. Если же учесть, что из системы можно получить и уравнение гиперболы xy=2a2, то эту же задачу возможно решить нахождением точек пересечения параболы с гиперболой.
    Для получения конических сечений Менехм пересекал конус — остроугольный, прямоугольный или тупоугольный — плоскостью, перпендикулярной одной из образующих. Для остроугольного конуса сечение плоскостью, перпендикулярной к его образующей, имеет форму эллипса. Тупоугольный конус при этом дает гиперболу, а прямоугольный – параболу.
    Отсюда произошли и названия кривых, которые были введены Аполлонием Пергским, жившим в III веке до нашей эры: эллипс (έλλείψίς), что означает изъян, недостаток (угла конуса до прямого); гипербола (ύπέρβωλη) — преувеличение, перевес (угла конуса над прямым); парабола (παραβολη) — приближение, равенство (угла конуса прямому углу). Позже греки заметили, что все три кривые можно получить на одном конусе, изменяя наклон секущей плоскости. При этом следует брать конус, состоящий из двух полостей и мыслить, что они простираются в бесконечность.
    Леонардо да Винчи изучал различные траектории и виды сложного движения в природе и технике. В записных книжках художника и учёного есть немало набросков, сделанных на основе наблюдений. Полёт птиц, водоворот, распространение света и звука, круги на воде, движение мяча и снаряда… Во всех случаях его особо интересовала геометрия траекторий: углы падения и отражения, кривые и прочие линии, а также зависимость их формы от различных параметров. Неудивительно, что да Винчи предвосхитил результаты Тартальи. Леонардо да Винчи часто доводилось делать построения и измерения, для которых требовались специальные инструменты. Вот как описывает мастера за работой Дмитрий Мережковский в романе «Воскресшие боги»: «…Стоя на коленях, рядом с Венерой, вынул он циркуль, угломер, полукруглую медную дугу, наподобие тех, какие употреблялись в математических приборах, и, с выражением того же упорного, спокойного и проникновенного любопытства в холодных, светло-голубых глазах и тонких, плотно сжатых губах, начал мерить различные части прекрасного тела…»
    В рукописях Леонардо да Винчи содержатся упоминания о самых разных чертёжных инструментах. Считается, что некоторые из них сконструировал он сам. Одно из его изобретений — устройство для рисования параболы. (Подобный инструмент, известный ещё грекам, описал арабский математик X-XI веков ас-Сиджизи.) Это был совершенный циркуль — с его помощью чертили все виды конических сечений: окружность, эллипс, параболу и гиперболу.
    Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.2. ПОНЯТИЕ КОНИЧЕСКИХ СЕЧЕНИЙКонические сечения — это плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев коническими сечениями являются эллипсы, гиперболы или параболы.
    При вращении прямоугольного треугольника около одного из катетов, гипотенуза с ее продолжениями описывает коническую поверхность, называемую поверхностью прямого кругового конуса, которая может быть рассматриваема как непрерывный ряд прямых, проходящих через вершину и называемых образующими, причем все образующие опираются на одну и ту же окружность, называемую производящей. Каждая из образующих представляет собой гипотенузу вращающегося треугольника (в известном его положении), продолженную в обе стороны до бесконечности. Таким образом, каждая образующая простирается по обе стороны от вершины, вследствие чего и поверхность имеет две полости: они сходятся в одну точку в общей вершине. Если такую поверхность пересечь плоскостью, то в сечении получится кривая, которая и называется коническим сечением. Она может быть трех типов:
    1) если плоскость пересекает коническую поверхность по всем образующим, то рассекается только одна полость и в сечении получается замкнутая кривая, называемая эллипсом;
    2) если секущая плоскость пересекает обе полости, то получается кривая, имеющая две ветви и называемая гиперболой;
    3) если секущая плоскость параллельна одной из образующих, то получается парабола.
    Если секущая плоскость параллельна производящей окружности, то получается окружность, которая может быть рассматриваема как частный случай эллипса. Секущая плоскость может пересекать коническую поверхность только в одной вершине, тогда в сечении получается точка, как частный случай эллипса.
    Если плоскостью, проходящей через вершину, пересекаются обе полости, то в сечении получается пара пересекающихся прямых, рассматриваемая как частный случай гиперболы.Если вершина бесконечно удалена, то коническая поверхность обращается в цилиндрическую, и сечение ее плоскостью, параллельной образующим, дает пару параллельных прямых как частный случай параболы. Конические сечения выражаются уравнениями 2-го порядка, общий вид которых
    Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 и называются кривыми 2-го порядка.

    3. ВИДЫ КОНИЧЕСКИХ СЕЧЕНИЙКонические сечения могут быть трёх типов:
    1) секущая плоскость пересекает все образующие конуса в точках одной его полости; линия пересечения есть замкнутая овальная кривая — эллипс; окружность как частный случай эллипса получается, когда секущая плоскость перпендикулярна оси конуса.

    2) Секущая плоскость параллельна одной из касательных плоскостей конуса; в сечении получается незамкнутая, уходящая в бесконечность кривая — парабола, целиком лежащая на одной полости.

    3) Секущая плоскость пересекает обе полости конуса; линия пересечения — гипербола — состоит из двух одинаковых незамкнутых, простирающихся в бесконечность частей (ветвей гиперболы), лежащих на обеих полостях конуса.

    В тех случаях, когда конические сечение имеет центр симметрии (центр), т. е. является эллипсом или гиперболой, его уравнение может быть приведено (путём перенесения начала координат в центр) к виду:
    a11x2+2a12xy + a22y2 = a33.
    Дальнейшие исследования таких (называемых центральными) конические сечения показывают, что их уравнения могут быть приведены к ещё более простому виду:
    Ах2 + Ву2 = С, если за направления осей координат выбрать главные направления — направления главных осей (осей симметрии) конических сечений. Если А и В имеют одинаковые знаки (совпадающие со знаком С), то уравнение определяет эллипс; если А и В разного знака, то — гиперболу.
    Уравнение параболы привести к виду (Ах2 + Ву2 = С) нельзя. При надлежащем выборе осей координат (одна ось координат — единственная ось симметрии параболы, другая — перпендикулярная к ней прямая, проходящая через вершину параболы) её уравнение можно привести к виду:
    y2 = 2рх.

    4. ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙИзучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу – как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу – как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.
    Эллипс. Если концы нити заданной длины закреплены в точках F1 и F2 (рис. 3), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F1 и F2 называются фокусами эллипса, а отрезки V1V2 и v1v2 между точками пересечения эллипса с осями координат – большой и малыми осями. Если точки F1 и F2 совпадают, то эллипс превращается в окружность.

    Гипербола. При построении гиперболы точка P, острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F1 и F2, как показано на рисунке 4, а, расстояния подобраны так, что отрезок PF2 превосходит по длине отрезок PF1 на фиксированную величину, меньшую расстояния F1F2. При этом один конец нити проходит под шпеньком F1, и оба конца нити проходят поверх шпенька F2. (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV1Q) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и, потягивая оба конца нити вниз за точку F2, а когда точка P окажется ниже отрезка F1F2, придерживая нить за оба конца и осторожно отпуская ее. Вторую ветвь гиперболы мы вычерчиваем, предварительно поменяв шпеньки F1 и F2.
    Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Угловые коэффициенты этих прямых равны где – отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F2F1; отрезок v1v2 называется сопряженной осью гиперболы, а отрезок V1V2 – ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v1, v2, V1, V2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v1 и v2. Они находятся на одинаковом расстоянии, равном от точки пересечения осей O. Эта формула предполагает построение прямоугольного треугольника с катетами Ov1 и V2O и гипотенузой F2O.
    Если асимптоты гиперболы взаимно перпендикулярны, то гипербола называется равнобочной. Две гиперболы, имеющие общие асимптоты, но с переставленными поперечной и сопряженной осями, называются взаимно сопряженными.Парабола. Фокусы эллипса и гиперболы были известны еще Аполлонию, но фокус параболы, по-видимому, впервые установил Папп (вторая пол. III в.), определивший эту кривую как геометрическое место точек, равноудаленных от заданной точки (фокуса) и заданной прямой, которая называется директрисой. Построение параболы с помощью натянутой нити, основанное на определении Паппа, было предложено Исидором Милетским (VI в.).
    Расположим линейку так, чтобы ее край совпал с директрисой, и приложим к этому краю катет AC чертежного треугольника ABC. Закрепим один конец нити длиной AB в вершине B треугольника, а другой – в фокусе параболы F. Натянув острием карандаша нить, прижмем острие в переменной точке P к свободному катету AB чертежного треугольника. По мере того, как треугольник будет перемещаться вдоль линейки, точка P будет описывать дугу параболы с фокусом F и директрисой, так как общая длина нити равна AB, отрезок нити прилегает к свободному катету треугольника, и поэтому оставшийся отрезок нити PF должен быть равен оставшейся части катета AB, то есть PA. Точка пересечения V параболы с осью называется вершиной параболы, прямая, проходящая через F и V, – осью параболы. Если через фокус провести прямую, перпендикулярную оси, то отрезок этой прямой, отсекаемый параболой, называется фокальным параметром. Для эллипса и гиперболы фокальный параметр определяется аналогично.

    5. ПРИМЕНЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ В ТЕХНИКЕ.Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала.

    Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении

    ЗАКЛЮЧЕНИЕКонические сечения — это плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину. С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев коническими сечениями являются эллипсы, гиперболы или параболы.
    Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала.
    СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВАлексеев. Теорема Абеля в задачах и решениях. 2001
    Верещагин Н.К., Ашан. Лекции по математической логике и теории алгоритмов. 1999
    Гельфанд И.М.. Лекции по линейной алгебре. 1998.
    Прасолов В.В.. Геометрия Лобачевского 2004
    Прасолов В.В.. Задачи по планиметрии 2001
    Шейнман О.К.. Основы теории представлений. 2004

    КОНИЧЕСКИЕ СЕЧЕНИЯ, плоские кривые, которые получаются пересечением прямого кругового конуса плоскостью, не проходящей через его вершину (рис. 1). С точки зрения аналитической геометрии коническое сечение представляет собой геометрическое место точек, удовлетворяющих уравнению второго порядка. За исключением вырожденных случаев, рассматриваемых в последнем разделе, коническими сечениями являются эллипсы, гиперболы или параболы.

    Конические сечения часто встречаются в природе и технике. Например, орбиты планет, обращающихся вокруг Солнца, имеют форму эллипсов. Окружность представляет собой частный случай эллипса, у которого большая ось равна малой. Параболическое зеркало обладает тем свойством, что все падающие лучи, параллельные его оси, сходятся в одной точке (фокусе). Это используется в большинстве телескопов-рефлекторов, где применяются параболические зеркала, а также в антеннах радаров и специальных микрофонах с параболическими отражателями. От источника света, помещенного в фокусе параболического отражателя, исходит пучок параллельных лучей. Поэтому в мощных прожекторах и автомобильных фарах используются параболические зеркала. Гипербола является графиком многих важных физических соотношений, например, закона Бойля (связывающего давление и объем идеального газа) и закона Ома, задающего электрический ток как функцию сопротивления при постоянном напряжении.

    РАННЯЯ ИСТОРИЯ

    Открывателем конических сечений предположительно считается Менехм (4 в. до н.э.), ученик Платона и учитель Александра Македонского. Менехм использовал параболу и равнобочную гиперболу для решения задачи об удвоении куба.

    Трактаты о конических сечениях, написанные Аристеем и Евклидом в конце 4 в. до н.э., были утеряны, но материалы из них вошли в знаменитые Конические сечения Аполлония Пергского (ок. 260-170 до н.э.), которые сохранились до нашего времени. Аполлоний отказался от требования перпендикулярности секущей плоскости образующей конуса и, варьируя угол ее наклона, получил все конические сечения из одного кругового конуса, прямого или наклонного. Аполлонию мы обязаны и современными названиями кривых — эллипс, парабола и гипербола.

    В своих построениях Аполлоний использовал двухполостной круговой конус (как на рис. 1), поэтому впервые стало ясно, что гипербола — кривая с двумя ветвями. Со времен Аполлония конические сечения делятся на три типа в зависимости от наклона секущей плоскости к образующей конуса. Эллипс (рис. 1,а ) образуется, когда секущая плоскость пересекает все образующие конуса в точках одной его полости; парабола (рис. 1,б ) — когда секущая плоскость параллельна одной из касательных плоскостей конуса; гипербола (рис. 1,в ) — когда секущая плоскость пересекает обе полости конуса.

    ПОСТРОЕНИЕ КОНИЧЕСКИХ СЕЧЕНИЙ

    Изучая конические сечения как пересечения плоскостей и конусов, древнегреческие математики рассматривали их и как траектории точек на плоскости. Было установлено, что эллипс можно определить как геометрическое место точек, сумма расстояний от которых до двух заданных точек постоянна; параболу — как геометрическое место точек, равноудаленных от заданной точки и заданной прямой; гиперболу — как геометрическое место точек, разность расстояний от которых до двух заданных точек постоянна.

    Эти определения конических сечений как плоских кривых подсказывают и способ их построения с помощью натянутой нити.

    Эллипс.

    Если концы нити заданной длины закреплены в точках F 1 и F 2 (рис. 2), то кривая, описываемая острием карандаша, скользящим по туго натянутой нити, имеет форму эллипса. Точки F 1 и F 2 называются фокусами эллипса, а отрезки V 1 V 2 и v 1 v 2 между точками пересечения эллипса с осями координат — большей и малой осями. Если точки F 1 и F 2 совпадают, то эллипс превращается в окружность.

    Гипербола.

    При построении гиперболы точка P , острие карандаша, фиксируется на нити, которая свободно скользит по шпенькам, установленным в точках F 1 и F 2 , как показано на рис. 3,а . Расстояния подобраны так, что отрезок PF 2 превосходит по длине отрезок PF 1 на фиксированную величину, меньшую расстояния F 1 F 2 . При этом один конец нити проходит под шпеньком F 1 и оба конца нити проходят поверх шпенька F 2 . (Острие карандаша не должно скользить по нити, поэтому его нужно закрепить, сделав на нити маленькую петлю и продев в нее острие.) Одну ветвь гиперболы (PV 1 Q ) мы вычерчиваем, следя за тем, чтобы нить оставалась все время натянутой, и потягивая оба конца нити вниз за точку F 2 , а когда точка P окажется ниже отрезка F 1 F 2 , придерживая нить за оба конца и осторожно потравливая (т.е. отпуская) ее. Вторую ветвь гиперболы (P ў V 2 Q ў ) мы вычерчиваем, предварительно поменяв ролями шпеньки F 1 и F 2 .

    Ветви гиперболы приближаются к двум прямым, которые пересекаются между ветвями. Эти прямые, называемые асимптотами гиперболы, строятся как показано на рис. 3,б . Угловые коэффициенты этих прямых равны ± (v 1 v 2)/(V 1 V 2), где v 1 v 2 — отрезок биссектрисы угла между асимптотами, перпендикулярной отрезку F 1 F 2 ; отрезок v 1 v 2 называется сопряженной осью гиперболы, а отрезок V 1 V 2 — ее поперечной осью. Таким образом, асимптоты являются диагоналями прямоугольника со сторонами, проходящими через четыре точки v 1 , v 2 , V 1 , V 2 параллельно осям. Чтобы построить этот прямоугольник, необходимо указать местоположение точек v 1 и v 2 . Они находятся на одинаковом расстоянии, равном

    от точки пересечения осей O . Эта формула предполагает построение прямоугольного треугольника с катетами Ov 1 и V 2 O и гипотенузой F 2 O .

    Профессиональные мужские инструменты
    Добавить комментарий