Конус его элементы. Конус как геометрическая фигура

Конус — это остроконечная фигура, в основании которой находится круг. Внешне он напоминает колпак. Высотой называют перпендикуляр, опущенный из вершины на основание конуса. Линия, соединяющая вершину конуса с основанием и проведённая перпендикулярно к плоскости основания, называется образующей.

Находим высоту конуса: алгоритм решения

Если задаче спрашивается, как найти высоту конуса, нам помогут свойства прямоугольного треугольника:

  1. Теорема Пифагора (квадрат гипотенузы равен сумме квадратов катетов).
  2. Зависимость величины углов от катетов и гипотенузы: синус угла равен отношению противолежащего катета к гипотенузе; косинус угла равен отношению прилежащего катета к гипотенузе.

Алгоритм решения задач о высоте конуса следующий:

  1. Начертить конус, провести высоту, обозначить все известные данные.
  2. Найти прямоугольный треугольник, образованный высотой и данными в задаче отрезками и углами. Если сразу не получается, сделать дополнительные построения.
  3. Применяя формулы для прямоугольного треугольника, найти высоту.

Как найти высоту конуса: примеры

Находим высоту прямого конуса

Если перпендикуляр, опущенный из вершины конуса на его основание, попадает в центр круга, конус называется прямым. Итак, мы имеем конус с образующей l = 16. Угол между образующей и основанием равен 30 °.

  1. Чертим прямой конус, высоту, образующую.
  2. Соединяем центр на основании конец высоты и образующей радиусом. Высота h и радиус основания — катеты прямоугольного треугольника, образующая — гипотенуза.
  3. Синус угла между гипотенузой-образующей и катетом-радиусом основания sin 30° = ½. Это отношение противолежащего катета — высоты h — и гипотенузы:
    • sin 30° = h/l = ½
    • h = sin 30°*l = ½ * 16 = 8.

Как найти высоту усечённого конуса

Усечённый конус получается, если у обычного конуса срезать вершину. Возьмём прямой усечённый конус. Диаметр верхнего основания d = 2, диаметр нижнего основания D = 4, образующая l = 4. Нужно найти высоту конуса h, т.е. расстояние между двумя основаниями.

  1. Чертим усечённый конус. Вертикальное сечение усечённого конуса — равнобедренная трапеция, и решать задачу надо, как задачу о трапеции.
  2. Посмотрим треугольник из высоты, образующей и отрезка диаметра а, который представляет собой разность между нижним и верхним диаметром, поделённую на два: а = (D — d)/2 = (4 — 2)/2 = 1.
  3. Отрезок диаметра — катет, высота h — второй катет — равен корню из разности квадратов гипотенузы и катета (теорема Пифагора):
    • h = √(l² — a²) = √(4² — 1²) = √15.
    • Ответ: h = √15.

Как находить высоту произвольного конуса

Предположим, у нас есть произвольный конус с основанием в виде круга. Вершина конуса выходит за пределы основания. Вертикальное сечение, проходящее через вершину и диаметр основания, представляет собой тупоугольный треугольник: две образующие l1 = 8 и l2 = 3 и диаметр D = 5. Высота h, опущенная из вершины, попадает на продолжение диаметра. Нужно найти высоту h.

Расстояние от вершины тупого угла до точки пересечения продолжения диаметра с высотой обозначим х. Получаем два прямоугольных треугольника:

  1. образующая l1 — диаметр плюс отрезок х — высота
  2. образующая l2 — отрезок х — высота.

Записываем, чему равна высота по теореме Пифагора:

Получаем систему двух уравнений, причём правые части этих уравнений равны h² и равны между собой:

  • l1² — (D + x)² = l2² — x²

Раскрываем скобки:

  • l1² — D² — 2 D х — x² = l2² — x²

Сокращаем x²:

  • l1² — D² — 2 D х = l2²
  • 2D х = l2² — l1² + D²
  • х = (l2² — l1² + D²)/2D = (8² — 5² — 3²)/2*5 = (64 — 25 — 9)/10 = 3.

Подставляем х в выражение (2), находим h:

  • h² = l2² — x²
  • h = √(l2² — x²) = √(25 — 9) = 4
  • Ответ: h = 4

Конус (с греческого «konos») – сосновая шишка. Конус знаком людям с глубокой древности. В 1906 году была обнаружена книга «О методе», написанная Архимедом (287-212 гг. до н. э.), в этой книге дается решение задачи об объеме общей части пересекающихся цилиндров. Архимед говорит, что это открытие принадлежит древнегреческому философу Демокриту (470-380 гг. до н.э.), который с помощью данного принципа получил формулы для вычисления объема пирамиды и конуса.

Конус (круговой конус) – тело, которое состоит из круга – основание конуса, точки, не принадлежащей плоскости этого круга, – вершины конуса и всех отрезков, соединяющих вершину конуса и точки окружности основания. Отрезки, которые соединяют вершину конуса с точками окружности основания, называются образующими конуса. Поверхность конуса состоит из основания и боковой поверхности.

Конус называется прямым, если прямая, которая соединяет вершину конуса с центром основания, перпендикулярна плоскости основания. Прямой круговой конус можно рассматривать как тело, полученное при вращении прямоугольного треугольника вокруг его катета как оси.

Высотой конуса называется перпендикуляр, опущенный из его вершины на плоскость основания. У прямого конуса основание высоты совпадает с центром основания. Осью прямого конуса называется прямая, содержащая его высоту.

Сечение конуса плоскостью, проходящей через образующую конуса и перпендикулярная осевому сечению, проведённому через эту образующую, называется касательной плоскостью конуса.

Плоскость, перпендикулярная оси конуса, пересекает конус по кругу, а боковую поверхность – по окружности с центром на оси конуса.

Плоскость, перпендикулярная оси конуса отсекает от него меньший конус. Оставшаяся часть называется усечённым конусом.

Объём конуса равен трети произведения высоты на площадь основания. Таким образом, все конусы, опирающиеся на данное основание и имеющие вершину, находящуюся на данной плоскости, параллельной основанию, имеют равный объём, поскольку их высоты равны.

Площадь боковой поверхности конуса можно найти по формуле:

S бок = πRl,

Площадь полной поверхности конуса находится по формуле:

S кон = πRl + πR 2 ,

где R – радиус основания, l – длина образующей.

Объём кругового конуса равен

V = 1/3 πR 2 H,

где R – радиус основания, Н – высота конуса

Площадь боковой поверхности усеченного конуса можно найти по формуле:

S бок = π(R + r)l,

Площадь полной поверхности усеченного конуса можно найти по формуле:

S кон = πR 2 + πr 2 + π(R + r)l,

где R – радиус нижнего основания, r – радиус верхнего основания, l – длина образующей.

Объём усечённого конуса можно найти следующим образом:

V = 1/3 πH(R 2 + Rr + r 2),

где R – радиус нижнего основания, r – радиус верхнего основания, Н – высота конуса.

www.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Определения:
Определение 1. Конус
Определение 2. Круговой конус
Определение 3. Высота конуса
Определение 4. Прямой конус
Определение 5. Прямой круговой конус
Теорема 1. Образующие конуса
Теорема 1.1. Осевое сечение конуса

Объем и площади :
Теорема 2. Объем конуса
Теорема 3. Площадь боковой поверхности конуса

Усеченный конус :
Теорема 4. Сечение, параллельное основанию
Определение 6. Усеченный конус
Теорема 5. Объем усеченного конуса
Теорема 6. Площадь боковой поверхности усеченного конуса

Определние
Тело ограниченное с боков конической поверхностью, взятой между её вершиной и плоскостью направляющей, и плоским основанием направляющей, образованным замкнутой кривой, называется конусом.

Основные понятия
Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.

Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.

Рассмотрим какую-либо линию (кривую, ломаную или смешанную)(например, l ), лежащую в некоторой плокости, и произвольную точку (например, М), не лежащую в этой плоскости. Всевозможные прямые, соединяющие точку М со всеми точками данной линии l , образуют поверхность, называемую канонической . Точка М является вершиной такой поверхности, а заданная линия l направляющей . Все прямые соединяющие точку М со всеми точками линии l , называют образующими . Каноническая поверхность не ограничивается ни её вершиной, ни направляющей. Она простирается неограниченно в обе стороны от вершины. Пусть теперь направляющая — замкнутая выпуклая линия. Если направляющая — ломаная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется пирамидой .
Если же направляющая — кривая или смешанная линия, то тело, ограниченное с боков канонической поверхностью, взятой между её вершиной и плокостью направляющей, и плоским основанием в плоскости направляющей, называется конусом или
Определение 1 . Конусом называют тело, состоящее из основания — плоской фигуры, ограниченной замкнутой линией (кривой или смешанной), вершины — точки, не лежащей в плокости основания, и всех отрезков, соединяющих вершину со всевозможными точками основания.
Все прямые, проходящие через вершину конуса и любую из точек кривой, ограничивающей фигуру основания конуса, называются образующими конуса. Чаще всего в геометрических задачах под образующей прямой имеется ввиду отрезок этой прямой, заключенный между вершиной и плоскостью основания конуса.
Основание ограниченной смешанной линией — это очень редкий случай. Он сдесь указан только потому, что он может быть рассмотрен в геометрии. Чаще рассматривается случай с криволинейной направляющей. Хотя, что случай с произвольной кривой, что случай со смешанной направляющей, мало чем полезен и в них сложно вывести какие-любо закономерности. Из числа конусов в курсе элементарной геометрии изучается прямой круговой конус.

Известно, что окружность есть частный случай замкнутой кривой линии. Круг — плоская фигура, ограниченная окружностью. Принимая окружность за направляющую, можно определеить круговой конус.
Определение 2 . Круговым конусом называют тело, которое состоит из круга (основания), точки, не лежащей в плоскости основания (вершины) и всех отрезков соединяющих вершину с точками основания.
Определение 3 . Высота конуса — перпендикуляр, опущенный из вершины на плокость основания конуса. Можно выделить конус, высота которого падает в центр плоской фигуры основания.
Определение 4 . Прямым конусом называется конус, высота которого основанием содержит центр основания конуса.
Если связать эти два определения, мы получим конус, основание котрого есть круг, а высота падает в центр этого круга.
Определение 5 . Прямым круговым конусом называют конус, основание котрого есть круг, а высота его соединяет вершину и центр основания данного конуса. Такой конус получается вращением прямоугольного треугольника вокруг одного из катетов. Поэтому прямой круговой конус является телом вращения и называется также конусом вращения. Если не оговорено противное, то для краткости в дальнейшем говорим просто конус.
Итак приведем некоторые свойства конуса:
Теорема 1 . Все образующие конуса равны. Доказательство. Высота МО перпендикулярна всем прямым основания по определению перпендикулярной прямой к плокости. Поэтому треугольники МОА, МОВ и МОС являются прямоугольными и равны по двум катетам (МО — общая, ОА=ОВ=ОС — радиусы основания. Поэтому равны и гипотенузы, т.е. образующие.
Радиус основания конуса иногда называют радиусом конуса . Высота конуса называется также осью конуса , поэтому любое сечение, проходящее через высоту называется осевым сечением . Любое осевое сечение пересекает основание по диаметру (т.к. прямая, по которой пересекаются осевое сечение и плокость основания, проходит через центр окружности) и образует тупоугольный треугольник.
Теорема 1.1. Осевое сечение конуса есть равнобедренный треугольник. Так треугольник АМВ является равнобедренным, т.к. две его стороны МВ и МА есть образующие. Угол АМВ является углом при вершине осевого сечения.

Профессиональные мужские инструменты
Добавить комментарий